
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ftok.3' command

$ man ftok.3

FTOK(3) Linux Programmer's Manual FTOK(3)

NAME

 ftok - convert a pathname and a project identifier to a System V IPC

 key

SYNOPSIS

 #include <sys/types.h>

 #include <sys/ipc.h>

 key_t ftok(const char *pathname, int proj_id);

DESCRIPTION

 The ftok() function uses the identity of the file named by the given

 pathname (which must refer to an existing, accessible file) and the

 least significant 8 bits of proj_id (which must be nonzero) to generate

 a key_t type System V IPC key, suitable for use with msgget(2),

 semget(2), or shmget(2).

 The resulting value is the same for all pathnames that name the same

 file, when the same value of proj_id is used. The value returned

 should be different when the (simultaneously existing) files or the

 project IDs differ.

RETURN VALUE

 On success, the generated key_t value is returned. On failure -1 is

 returned, with errno indicating the error as for the stat(2) system

 call.

ATTRIBUTES Page 1/2

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??????????????????????????????????????

 ?Interface ? Attribute ? Value ?

 ??????????????????????????????????????

 ?ftok() ? Thread safety ? MT-Safe ?

 ??????????????????????????????????????

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 On some ancient systems, the prototype was:

 key_t ftok(char *pathname, char proj_id);

 Today, proj_id is an int, but still only 8 bits are used. Typical us?

 age has an ASCII character proj_id, that is why the behavior is said to

 be undefined when proj_id is zero.

 Of course, no guarantee can be given that the resulting key_t is

 unique. Typically, a best-effort attempt combines the given proj_id

 byte, the lower 16 bits of the inode number, and the lower 8 bits of

 the device number into a 32-bit result. Collisions may easily happen,

 for example between files on /dev/hda1 and files on /dev/sda1.

EXAMPLES

 See semget(2).

SEE ALSO

 msgget(2), semget(2), shmget(2), stat(2), sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-04-11 FTOK(3)

Page 2/2

