
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'fsync.2' command

$ man fsync.2

FSYNC(2) Linux Programmer's Manual FSYNC(2)

NAME

 fsync, fdatasync - synchronize a file's in-core state with storage de?

 vice

SYNOPSIS

 #include <unistd.h>

 int fsync(int fd);

 int fdatasync(int fd);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fsync():

 Glibc 2.16 and later:

 No feature test macros need be defined

 Glibc up to and including 2.15:

 _BSD_SOURCE || _XOPEN_SOURCE

 || /* since glibc 2.8: */ _POSIX_C_SOURCE >= 200112L

 fdatasync():

 _POSIX_C_SOURCE >= 199309L || _XOPEN_SOURCE >= 500

DESCRIPTION

 fsync() transfers ("flushes") all modified in-core data of (i.e., modi?

 fied buffer cache pages for) the file referred to by the file descrip?

 tor fd to the disk device (or other permanent storage device) so that

 all changed information can be retrieved even if the system crashes or

 is rebooted. This includes writing through or flushing a disk cache if Page 1/3

 present. The call blocks until the device reports that the transfer

 has completed.

 As well as flushing the file data, fsync() also flushes the metadata

 information associated with the file (see inode(7)).

 Calling fsync() does not necessarily ensure that the entry in the di?

 rectory containing the file has also reached disk. For that an ex?

 plicit fsync() on a file descriptor for the directory is also needed.

 fdatasync() is similar to fsync(), but does not flush modified metadata

 unless that metadata is needed in order to allow a subsequent data re?

 trieval to be correctly handled. For example, changes to st_atime or

 st_mtime (respectively, time of last access and time of last modifica?

 tion; see inode(7)) do not require flushing because they are not neces?

 sary for a subsequent data read to be handled correctly. On the other

 hand, a change to the file size (st_size, as made by say ftruncate(2)),

 would require a metadata flush.

 The aim of fdatasync() is to reduce disk activity for applications that

 do not require all metadata to be synchronized with the disk.

RETURN VALUE

 On success, these system calls return zero. On error, -1 is returned,

 and errno is set appropriately.

ERRORS

 EBADF fd is not a valid open file descriptor.

 EIO An error occurred during synchronization. This error may relate

 to data written to some other file descriptor on the same file.

 Since Linux 4.13, errors from write-back will be reported to all

 file descriptors that might have written the data which trig?

 gered the error. Some filesystems (e.g., NFS) keep close track

 of which data came through which file descriptor, and give more

 precise reporting. Other filesystems (e.g., most local filesys?

 tems) will report errors to all file descriptors that were open

 on the file when the error was recorded.

 ENOSPC Disk space was exhausted while synchronizing.

 EROFS, EINVAL Page 2/3

 fd is bound to a special file (e.g., a pipe, FIFO, or socket)

 which does not support synchronization.

 ENOSPC, EDQUOT

 fd is bound to a file on NFS or another filesystem which does

 not allocate space at the time of a write(2) system call, and

 some previous write failed due to insufficient storage space.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.3BSD.

 On POSIX systems on which fdatasync() is available, _POSIX_SYNCHRO?

 NIZED_IO is defined in <unistd.h> to a value greater than 0. (See also

 sysconf(3).)

NOTES

 On some UNIX systems (but not Linux), fd must be a writable file de?

 scriptor.

 In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so

 has no performance advantage.

 The fsync() implementations in older kernels and lesser used filesys?

 tems do not know how to flush disk caches. In these cases disk caches

 need to be disabled using hdparm(8) or sdparm(8) to guarantee safe op?

 eration.

SEE ALSO

 sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2),

 sync_file_range(2), fflush(3), fileno(3), hdparm(8), mount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 FSYNC(2)

Page 3/3

