
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'fstatat.2' command

$ man fstatat.2

STAT(2) Linux Programmer's Manual STAT(2)

NAME

 stat, fstat, lstat, fstatat - get file status

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <unistd.h>

 int stat(const char *pathname, struct stat *statbuf);

 int fstat(int fd, struct stat *statbuf);

 int lstat(const char *pathname, struct stat *statbuf);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <sys/stat.h>

 int fstatat(int dirfd, const char *pathname, struct stat *statbuf,

 int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 lstat():

 /* glibc 2.19 and earlier */ _BSD_SOURCE

 || /* Since glibc 2.20 */ _DEFAULT_SOURCE

 || _XOPEN_SOURCE >= 500

 || /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200112L

 fstatat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L Page 1/10

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 These functions return information about a file, in the buffer pointed

 to by statbuf. No permissions are required on the file itself, but?in

 the case of stat(), fstatat(), and lstat()?execute (search) permission

 is required on all of the directories in pathname that lead to the

 file.

 stat() and fstatat() retrieve information about the file pointed to by

 pathname; the differences for fstatat() are described below.

 lstat() is identical to stat(), except that if pathname is a symbolic

 link, then it returns information about the link itself, not the file

 that the link refers to.

 fstat() is identical to stat(), except that the file about which infor?

 mation is to be retrieved is specified by the file descriptor fd.

 The stat structure

 All of these system calls return a stat structure, which contains the

 following fields:

 struct stat {

 dev_t st_dev; /* ID of device containing file */

 ino_t st_ino; /* Inode number */

 mode_t st_mode; /* File type and mode */

 nlink_t st_nlink; /* Number of hard links */

 uid_t st_uid; /* User ID of owner */

 gid_t st_gid; /* Group ID of owner */

 dev_t st_rdev; /* Device ID (if special file) */

 off_t st_size; /* Total size, in bytes */

 blksize_t st_blksize; /* Block size for filesystem I/O */

 blkcnt_t st_blocks; /* Number of 512B blocks allocated */

 /* Since Linux 2.6, the kernel supports nanosecond

 precision for the following timestamp fields.

 For the details before Linux 2.6, see NOTES. */

 struct timespec st_atim; /* Time of last access */ Page 2/10

 struct timespec st_mtim; /* Time of last modification */

 struct timespec st_ctim; /* Time of last status change */

 #define st_atime st_atim.tv_sec /* Backward compatibility */

 #define st_mtime st_mtim.tv_sec

 #define st_ctime st_ctim.tv_sec

 };

 Note: the order of fields in the stat structure varies somewhat across

 architectures. In addition, the definition above does not show the

 padding bytes that may be present between some fields on various archi?

 tectures. Consult the glibc and kernel source code if you need to know

 the details.

 Note: for performance and simplicity reasons, different fields in the

 stat structure may contain state information from different moments

 during the execution of the system call. For example, if st_mode or

 st_uid is changed by another process by calling chmod(2) or chown(2),

 stat() might return the old st_mode together with the new st_uid, or

 the old st_uid together with the new st_mode.

 The fields in the stat structure are as follows:

 st_dev This field describes the device on which this file resides.

 (The major(3) and minor(3) macros may be useful to decompose the

 device ID in this field.)

 st_ino This field contains the file's inode number.

 st_mode

 This field contains the file type and mode. See inode(7) for

 further information.

 st_nlink

 This field contains the number of hard links to the file.

 st_uid This field contains the user ID of the owner of the file.

 st_gid This field contains the ID of the group owner of the file.

 st_rdev

 This field describes the device that this file (inode) repre?

 sents.

 st_size Page 3/10

 This field gives the size of the file (if it is a regular file

 or a symbolic link) in bytes. The size of a symbolic link is

 the length of the pathname it contains, without a terminating

 null byte.

 st_blksize

 This field gives the "preferred" block size for efficient

 filesystem I/O.

 st_blocks

 This field indicates the number of blocks allocated to the file,

 in 512-byte units. (This may be smaller than st_size/512 when

 the file has holes.)

 st_atime

 This is the time of the last access of file data.

 st_mtime

 This is the time of last modification of file data.

 st_ctime

 This is the file's last status change timestamp (time of last

 change to the inode).

 For further information on the above fields, see inode(7).

 fstatat()

 The fstatat() system call is a more general interface for accessing

 file information which can still provide exactly the behavior of each

 of stat(), lstat(), and fstat().

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd

 (rather than relative to the current working directory of the calling

 process, as is done by stat() and lstat() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then

 pathname is interpreted relative to the current working directory of

 the calling process (like stat() and lstat()).

 If pathname is absolute, then dirfd is ignored.

 flags can either be 0, or include one or more of the following flags

 ORed: Page 4/10

 AT_EMPTY_PATH (since Linux 2.6.39)

 If pathname is an empty string, operate on the file referred to

 by dirfd (which may have been obtained using the open(2) O_PATH

 flag). In this case, dirfd can refer to any type of file, not

 just a directory, and the behavior of fstatat() is similar to

 that of fstat(). If dirfd is AT_FDCWD, the call operates on the

 current working directory. This flag is Linux-specific; define

 _GNU_SOURCE to obtain its definition.

 AT_NO_AUTOMOUNT (since Linux 2.6.38)

 Don't automount the terminal ("basename") component of pathname

 if it is a directory that is an automount point. This allows

 the caller to gather attributes of an automount point (rather

 than the location it would mount). Since Linux 4.14, also don't

 instantiate a nonexistent name in an on-demand directory such as

 used for automounter indirect maps. This flag has no effect if

 the mount point has already been mounted over.

 Both stat() and lstat() act as though AT_NO_AUTOMOUNT was set.

 The AT_NO_AUTOMOUNT can be used in tools that scan directories

 to prevent mass-automounting of a directory of automount points.

 This flag is Linux-specific; define _GNU_SOURCE to obtain its

 definition.

 AT_SYMLINK_NOFOLLOW

 If pathname is a symbolic link, do not dereference it: instead

 return information about the link itself, like lstat(). (By de?

 fault, fstatat() dereferences symbolic links, like stat().)

 See openat(2) for an explanation of the need for fstatat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 EACCES Search permission is denied for one of the directories in the

 path prefix of pathname. (See also path_resolution(7).)

 EBADF fd is not a valid open file descriptor. Page 5/10

 EFAULT Bad address.

 ELOOP Too many symbolic links encountered while traversing the path.

 ENAMETOOLONG

 pathname is too long.

 ENOENT A component of pathname does not exist or is a dangling symbolic

 link.

 ENOENT pathname is an empty string and AT_EMPTY_PATH was not specified

 in flags.

 ENOMEM Out of memory (i.e., kernel memory).

 ENOTDIR

 A component of the path prefix of pathname is not a directory.

 EOVERFLOW

 pathname or fd refers to a file whose size, inode number, or

 number of blocks cannot be represented in, respectively, the

 types off_t, ino_t, or blkcnt_t. This error can occur when, for

 example, an application compiled on a 32-bit platform without

 -D_FILE_OFFSET_BITS=64 calls stat() on a file whose size exceeds

 (1<<31)-1 bytes.

 The following additional errors can occur for fstatat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL Invalid flag specified in flags.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to

 a file other than a directory.

VERSIONS

 fstatat() was added to Linux in kernel 2.6.16; library support was

 added to glibc in version 2.4.

CONFORMING TO

 stat(), fstat(), lstat(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1.2008.

 fstatat(): POSIX.1-2008.

 According to POSIX.1-2001, lstat() on a symbolic link need return valid

 information only in the st_size field and the file type of the st_mode

 field of the stat structure. POSIX.1-2008 tightens the specification, Page 6/10

 requiring lstat() to return valid information in all fields except the

 mode bits in st_mode.

 Use of the st_blocks and st_blksize fields may be less portable. (They

 were introduced in BSD. The interpretation differs between systems,

 and possibly on a single system when NFS mounts are involved.)

NOTES

 Timestamp fields

 Older kernels and older standards did not support nanosecond timestamp

 fields. Instead, there were three timestamp fields?st_atime, st_mtime,

 and st_ctime?typed as time_t that recorded timestamps with one-second

 precision.

 Since kernel 2.5.48, the stat structure supports nanosecond resolution

 for the three file timestamp fields. The nanosecond components of each

 timestamp are available via names of the form st_atim.tv_nsec, if suit?

 able feature test macros are defined. Nanosecond timestamps were stan?

 dardized in POSIX.1-2008, and, starting with version 2.12, glibc ex?

 poses the nanosecond component names if _POSIX_C_SOURCE is defined with

 the value 200809L or greater, or _XOPEN_SOURCE is defined with the

 value 700 or greater. Up to and including glibc 2.19, the definitions

 of the nanoseconds components are also defined if _BSD_SOURCE or

 _SVID_SOURCE is defined. If none of the aforementioned macros are de?

 fined, then the nanosecond values are exposed with names of the form

 st_atimensec.

 C library/kernel differences

 Over time, increases in the size of the stat structure have led to

 three successive versions of stat(): sys_stat() (slot __NR_oldstat),

 sys_newstat() (slot __NR_stat), and sys_stat64() (slot __NR_stat64) on

 32-bit platforms such as i386. The first two versions were already

 present in Linux 1.0 (albeit with different names); the last was added

 in Linux 2.4. Similar remarks apply for fstat() and lstat().

 The kernel-internal versions of the stat structure dealt with by the

 different versions are, respectively:

 __old_kernel_stat Page 7/10

 The original structure, with rather narrow fields, and no pad?

 ding.

 stat Larger st_ino field and padding added to various parts of the

 structure to allow for future expansion.

 stat64 Even larger st_ino field, larger st_uid and st_gid fields to ac?

 commodate the Linux-2.4 expansion of UIDs and GIDs to 32 bits,

 and various other enlarged fields and further padding in the

 structure. (Various padding bytes were eventually consumed in

 Linux 2.6, with the advent of 32-bit device IDs and nanosecond

 components for the timestamp fields.)

 The glibc stat() wrapper function hides these details from applica?

 tions, invoking the most recent version of the system call provided by

 the kernel, and repacking the returned information if required for old

 binaries.

 On modern 64-bit systems, life is simpler: there is a single stat()

 system call and the kernel deals with a stat structure that contains

 fields of a sufficient size.

 The underlying system call employed by the glibc fstatat() wrapper

 function is actually called fstatat64() or, on some architectures,

 newfstatat().

EXAMPLES

 The following program calls lstat() and displays selected fields in the

 returned stat structure.

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <stdint.h>

 #include <time.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/sysmacros.h>

 int

 main(int argc, char *argv[])

 { Page 8/10

 struct stat sb;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 if (lstat(argv[1], &sb) == -1) {

 perror("lstat");

 exit(EXIT_FAILURE);

 }

 printf("ID of containing device: [%jx,%jx]\n",

 (uintmax_t) major(sb.st_dev),

 (uintmax_t) minor(sb.st_dev));

 printf("File type: ");

 switch (sb.st_mode & S_IFMT) {

 case S_IFBLK: printf("block device\n"); break;

 case S_IFCHR: printf("character device\n"); break;

 case S_IFDIR: printf("directory\n"); break;

 case S_IFIFO: printf("FIFO/pipe\n"); break;

 case S_IFLNK: printf("symlink\n"); break;

 case S_IFREG: printf("regular file\n"); break;

 case S_IFSOCK: printf("socket\n"); break;

 default: printf("unknown?\n"); break;

 }

 printf("I-node number: %ju\n", (uintmax_t) sb.st_ino);

 printf("Mode: %jo (octal)\n",

 (uintmax_t) sb.st_mode);

 printf("Link count: %ju\n", (uintmax_t) sb.st_nlink);

 printf("Ownership: UID=%ju GID=%ju\n",

 (uintmax_t) sb.st_uid, (uintmax_t) sb.st_gid);

 printf("Preferred I/O block size: %jd bytes\n",

 (intmax_t) sb.st_blksize);

 printf("File size: %jd bytes\n",

 (intmax_t) sb.st_size); Page 9/10

 printf("Blocks allocated: %jd\n",

 (intmax_t) sb.st_blocks);

 printf("Last status change: %s", ctime(&sb.st_ctime));

 printf("Last file access: %s", ctime(&sb.st_atime));

 printf("Last file modification: %s", ctime(&sb.st_mtime));

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), statx(2),

 utime(2), capabilities(7), inode(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 STAT(2)

Page 10/10

