
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'freopen.3' command

$ man freopen.3

FOPEN(3) Linux Programmer's Manual FOPEN(3)

NAME

 fopen, fdopen, freopen - stream open functions

SYNOPSIS

 #include <stdio.h>

 FILE *fopen(const char *pathname, const char *mode);

 FILE *fdopen(int fd, const char *mode);

 FILE *freopen(const char *pathname, const char *mode, FILE *stream);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fdopen(): _POSIX_C_SOURCE

DESCRIPTION

 The fopen() function opens the file whose name is the string pointed to

 by pathname and associates a stream with it.

 The argument mode points to a string beginning with one of the follow?

 ing sequences (possibly followed by additional characters, as described

 below):

 r Open text file for reading. The stream is positioned at the be?

 ginning of the file.

 r+ Open for reading and writing. The stream is positioned at the

 beginning of the file.

 w Truncate file to zero length or create text file for writing.

 The stream is positioned at the beginning of the file.

 w+ Open for reading and writing. The file is created if it does Page 1/6

 not exist, otherwise it is truncated. The stream is positioned

 at the beginning of the file.

 a Open for appending (writing at end of file). The file is cre?

 ated if it does not exist. The stream is positioned at the end

 of the file.

 a+ Open for reading and appending (writing at end of file). The

 file is created if it does not exist. Output is always appended

 to the end of the file. POSIX is silent on what the initial

 read position is when using this mode. For glibc, the initial

 file position for reading is at the beginning of the file, but

 for Android/BSD/MacOS, the initial file position for reading is

 at the end of the file.

 The mode string can also include the letter 'b' either as a last char?

 acter or as a character between the characters in any of the two-char?

 acter strings described above. This is strictly for compatibility with

 C89 and has no effect; the 'b' is ignored on all POSIX conforming sys?

 tems, including Linux. (Other systems may treat text files and binary

 files differently, and adding the 'b' may be a good idea if you do I/O

 to a binary file and expect that your program may be ported to non-UNIX

 environments.)

 See NOTES below for details of glibc extensions for mode.

 Any created file will have the mode S_IRUSR | S_IWUSR | S_IRGRP | S_IW?

 GRP | S_IROTH | S_IWOTH (0666), as modified by the process's umask

 value (see umask(2)).

 Reads and writes may be intermixed on read/write streams in any order.

 Note that ANSI C requires that a file positioning function intervene

 between output and input, unless an input operation encounters end-of-

 file. (If this condition is not met, then a read is allowed to return

 the result of writes other than the most recent.) Therefore it is good

 practice (and indeed sometimes necessary under Linux) to put an

 fseek(3) or fgetpos(3) operation between write and read operations on

 such a stream. This operation may be an apparent no-op (as in

 fseek(..., 0L, SEEK_CUR) called for its synchronizing side effect). Page 2/6

 Opening a file in append mode (a as the first character of mode) causes

 all subsequent write operations to this stream to occur at end-of-file,

 as if preceded the call:

 fseek(stream, 0, SEEK_END);

 The file descriptor associated with the stream is opened as if by a

 call to open(2) with the following flags:

 ???

 ?fopen() mode ? open() flags ?

 ???

 ? r ? O_RDONLY ?

 ???

 ? w ? O_WRONLY | O_CREAT | O_TRUNC ?

 ???

 ? a ? O_WRONLY | O_CREAT | O_APPEND ?

 ???

 ? r+ ? O_RDWR ?

 ???

 ? w+ ? O_RDWR | O_CREAT | O_TRUNC ?

 ???

 ? a+ ? O_RDWR | O_CREAT | O_APPEND ?

 ???

 fdopen()

 The fdopen() function associates a stream with the existing file de?

 scriptor, fd. The mode of the stream (one of the values "r", "r+",

 "w", "w+", "a", "a+") must be compatible with the mode of the file de?

 scriptor. The file position indicator of the new stream is set to that

 belonging to fd, and the error and end-of-file indicators are cleared.

 Modes "w" or "w+" do not cause truncation of the file. The file de?

 scriptor is not dup'ed, and will be closed when the stream created by

 fdopen() is closed. The result of applying fdopen() to a shared memory

 object is undefined.

 freopen()

 The freopen() function opens the file whose name is the string pointed Page 3/6

 to by pathname and associates the stream pointed to by stream with it.

 The original stream (if it exists) is closed. The mode argument is

 used just as in the fopen() function.

 If the pathname argument is a null pointer, freopen() changes the mode

 of the stream to that specified in mode; that is, freopen() reopens the

 pathname that is associated with the stream. The specification for

 this behavior was added in the C99 standard, which says:

 In this case, the file descriptor associated with the stream

 need not be closed if the call to freopen() succeeds. It is im?

 plementation-defined which changes of mode are permitted (if

 any), and under what circumstances.

 The primary use of the freopen() function is to change the file associ?

 ated with a standard text stream (stderr, stdin, or stdout).

RETURN VALUE

 Upon successful completion fopen(), fdopen(), and freopen() return a

 FILE pointer. Otherwise, NULL is returned and errno is set to indicate

 the error.

ERRORS

 EINVAL The mode provided to fopen(), fdopen(), or freopen() was in?

 valid.

 The fopen(), fdopen(), and freopen() functions may also fail and set

 errno for any of the errors specified for the routine malloc(3).

 The fopen() function may also fail and set errno for any of the errors

 specified for the routine open(2).

 The fdopen() function may also fail and set errno for any of the errors

 specified for the routine fcntl(2).

 The freopen() function may also fail and set errno for any of the er?

 rors specified for the routines open(2), fclose(3), and fflush(3).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ? Page 4/6

 ???

 ?fopen(), fdopen(), freopen() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 fopen(), freopen(): POSIX.1-2001, POSIX.1-2008, C89, C99.

 fdopen(): POSIX.1-2001, POSIX.1-2008.

NOTES

 Glibc notes

 The GNU C library allows the following extensions for the string speci?

 fied in mode:

 c (since glibc 2.3.3)

 Do not make the open operation, or subsequent read and write op?

 erations, thread cancellation points. This flag is ignored for

 fdopen().

 e (since glibc 2.7)

 Open the file with the O_CLOEXEC flag. See open(2) for more in?

 formation. This flag is ignored for fdopen().

 m (since glibc 2.3)

 Attempt to access the file using mmap(2), rather than I/O system

 calls (read(2), write(2)). Currently, use of mmap(2) is at?

 tempted only for a file opened for reading.

 x Open the file exclusively (like the O_EXCL flag of open(2)). If

 the file already exists, fopen() fails, and sets errno to EEX?

 IST. This flag is ignored for fdopen().

 In addition to the above characters, fopen() and freopen() support the

 following syntax in mode:

 ,ccs=string

 The given string is taken as the name of a coded character set and the

 stream is marked as wide-oriented. Thereafter, internal conversion

 functions convert I/O to and from the character set string. If the

 ,ccs=string syntax is not specified, then the wide-orientation of the

 stream is determined by the first file operation. If that operation is

 a wide-character operation, the stream is marked wide-oriented, and Page 5/6

 functions to convert to the coded character set are loaded.

BUGS

 When parsing for individual flag characters in mode (i.e., the charac?

 ters preceding the "ccs" specification), the glibc implementation of

 fopen() and freopen() limits the number of characters examined in mode

 to 7 (or, in glibc versions before 2.14, to 6, which was not enough to

 include possible specifications such as "rb+cmxe"). The current imple?

 mentation of fdopen() parses at most 5 characters in mode.

SEE ALSO

 open(2), fclose(3), fileno(3), fmemopen(3), fopencookie(3), open_mem?

 stream(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 FOPEN(3)

Page 6/6

