
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'flock.2' command

$ man flock.2

FLOCK(2) Linux Programmer's Manual FLOCK(2)

NAME

 flock - apply or remove an advisory lock on an open file

SYNOPSIS

 #include <sys/file.h>

 int flock(int fd, int operation);

DESCRIPTION

 Apply or remove an advisory lock on the open file specified by fd. The

 argument operation is one of the following:

 LOCK_SH Place a shared lock. More than one process may hold a

 shared lock for a given file at a given time.

 LOCK_EX Place an exclusive lock. Only one process may hold an ex?

 clusive lock for a given file at a given time.

 LOCK_UN Remove an existing lock held by this process.

 A call to flock() may block if an incompatible lock is held by another

 process. To make a nonblocking request, include LOCK_NB (by ORing)

 with any of the above operations.

 A single file may not simultaneously have both shared and exclusive

 locks.

 Locks created by flock() are associated with an open file description

 (see open(2)). This means that duplicate file descriptors (created by,

 for example, fork(2) or dup(2)) refer to the same lock, and this lock

 may be modified or released using any of these file descriptors. Fur? Page 1/4

 thermore, the lock is released either by an explicit LOCK_UN operation

 on any of these duplicate file descriptors, or when all such file de?

 scriptors have been closed.

 If a process uses open(2) (or similar) to obtain more than one file de?

 scriptor for the same file, these file descriptors are treated indepen?

 dently by flock(). An attempt to lock the file using one of these file

 descriptors may be denied by a lock that the calling process has al?

 ready placed via another file descriptor.

 A process may hold only one type of lock (shared or exclusive) on a

 file. Subsequent flock() calls on an already locked file will convert

 an existing lock to the new lock mode.

 Locks created by flock() are preserved across an execve(2).

 A shared or exclusive lock can be placed on a file regardless of the

 mode in which the file was opened.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 EBADF fd is not an open file descriptor.

 EINTR While waiting to acquire a lock, the call was interrupted by de?

 livery of a signal caught by a handler; see signal(7).

 EINVAL operation is invalid.

 ENOLCK The kernel ran out of memory for allocating lock records.

 EWOULDBLOCK

 The file is locked and the LOCK_NB flag was selected.

CONFORMING TO

 4.4BSD (the flock() call first appeared in 4.2BSD). A version of

 flock(), possibly implemented in terms of fcntl(2), appears on most

 UNIX systems.

NOTES

 Since kernel 2.0, flock() is implemented as a system call in its own

 right rather than being emulated in the GNU C library as a call to fc?

 ntl(2). With this implementation, there is no interaction between the Page 2/4

 types of lock placed by flock() and fcntl(2), and flock() does not de?

 tect deadlock. (Note, however, that on some systems, such as the mod?

 ern BSDs, flock() and fcntl(2) locks do interact with one another.)

 flock() places advisory locks only; given suitable permissions on a

 file, a process is free to ignore the use of flock() and perform I/O on

 the file.

 flock() and fcntl(2) locks have different semantics with respect to

 forked processes and dup(2). On systems that implement flock() using

 fcntl(2), the semantics of flock() will be different from those de?

 scribed in this manual page.

 Converting a lock (shared to exclusive, or vice versa) is not guaran?

 teed to be atomic: the existing lock is first removed, and then a new

 lock is established. Between these two steps, a pending lock request

 by another process may be granted, with the result that the conversion

 either blocks, or fails if LOCK_NB was specified. (This is the origi?

 nal BSD behavior, and occurs on many other implementations.)

 NFS details

 In Linux kernels up to 2.6.11, flock() does not lock files over NFS

 (i.e., the scope of locks was limited to the local system). Instead,

 one could use fcntl(2) byte-range locking, which does work over NFS,

 given a sufficiently recent version of Linux and a server which sup?

 ports locking.

 Since Linux 2.6.12, NFS clients support flock() locks by emulating them

 as fcntl(2) byte-range locks on the entire file. This means that fc?

 ntl(2) and flock() locks do interact with one another over NFS. It

 also means that in order to place an exclusive lock, the file must be

 opened for writing.

 Since Linux 2.6.37, the kernel supports a compatibility mode that al?

 lows flock() locks (and also fcntl(2) byte region locks) to be treated

 as local; see the discussion of the local_lock option in nfs(5).

SEE ALSO

 flock(1), close(2), dup(2), execve(2), fcntl(2), fork(2), open(2),

 lockf(3), lslocks(8) Page 3/4

 Documentation/filesystems/locks.txt in the Linux kernel source tree

 (Documentation/locks.txt in older kernels)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 FLOCK(2)

Page 4/4

