
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'fallocate.2' command

$ man fallocate.2

FALLOCATE(2) Linux Programmer's Manual FALLOCATE(2)

NAME

 fallocate - manipulate file space

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h>

 int fallocate(int fd, int mode, off_t offset, off_t len);

DESCRIPTION

 This is a nonportable, Linux-specific system call. For the portable,

 POSIX.1-specified method of ensuring that space is allocated for a

 file, see posix_fallocate(3).

 fallocate() allows the caller to directly manipulate the allocated disk

 space for the file referred to by fd for the byte range starting at

 offset and continuing for len bytes.

 The mode argument determines the operation to be performed on the given

 range. Details of the supported operations are given in the subsec?

 tions below.

 Allocating disk space

 The default operation (i.e., mode is zero) of fallocate() allocates the

 disk space within the range specified by offset and len. The file size

 (as reported by stat(2)) will be changed if offset+len is greater than

 the file size. Any subregion within the range specified by offset and

 len that did not contain data before the call will be initialized to Page 1/6

 zero. This default behavior closely resembles the behavior of the

 posix_fallocate(3) library function, and is intended as a method of op?

 timally implementing that function.

 After a successful call, subsequent writes into the range specified by

 offset and len are guaranteed not to fail because of lack of disk

 space.

 If the FALLOC_FL_KEEP_SIZE flag is specified in mode, the behavior of

 the call is similar, but the file size will not be changed even if off?

 set+len is greater than the file size. Preallocating zeroed blocks be?

 yond the end of the file in this manner is useful for optimizing append

 workloads.

 If the FALLOC_FL_UNSHARE flag is specified in mode, shared file data

 extents will be made private to the file to guarantee that a subsequent

 write will not fail due to lack of space. Typically, this will be done

 by performing a copy-on-write operation on all shared data in the file.

 This flag may not be supported by all filesystems.

 Because allocation is done in block size chunks, fallocate() may allo?

 cate a larger range of disk space than was specified.

 Deallocating file space

 Specifying the FALLOC_FL_PUNCH_HOLE flag (available since Linux 2.6.38)

 in mode deallocates space (i.e., creates a hole) in the byte range

 starting at offset and continuing for len bytes. Within the specified

 range, partial filesystem blocks are zeroed, and whole filesystem

 blocks are removed from the file. After a successful call, subsequent

 reads from this range will return zeros.

 The FALLOC_FL_PUNCH_HOLE flag must be ORed with FALLOC_FL_KEEP_SIZE in

 mode; in other words, even when punching off the end of the file, the

 file size (as reported by stat(2)) does not change.

 Not all filesystems support FALLOC_FL_PUNCH_HOLE; if a filesystem

 doesn't support the operation, an error is returned. The operation is

 supported on at least the following filesystems:

 * XFS (since Linux 2.6.38)

 * ext4 (since Linux 3.0) Page 2/6

 * Btrfs (since Linux 3.7)

 * tmpfs(5) (since Linux 3.5)

 * gfs2(5) (since Linux 4.16)

 Collapsing file space

 Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux

 3.15) in mode removes a byte range from a file, without leaving a hole.

 The byte range to be collapsed starts at offset and continues for len

 bytes. At the completion of the operation, the contents of the file

 starting at the location offset+len will be appended at the location

 offset, and the file will be len bytes smaller.

 A filesystem may place limitations on the granularity of the operation,

 in order to ensure efficient implementation. Typically, offset and len

 must be a multiple of the filesystem logical block size, which varies

 according to the filesystem type and configuration. If a filesystem

 has such a requirement, fallocate() fails with the error EINVAL if this

 requirement is violated.

 If the region specified by offset plus len reaches or passes the end of

 file, an error is returned; instead, use ftruncate(2) to truncate a

 file.

 No other flags may be specified in mode in conjunction with FAL?

 LOC_FL_COLLAPSE_RANGE.

 As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only

 for extent-based files) and XFS.

 Zeroing file space

 Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15)

 in mode zeros space in the byte range starting at offset and continuing

 for len bytes. Within the specified range, blocks are preallocated for

 the regions that span the holes in the file. After a successful call,

 subsequent reads from this range will return zeros.

 Zeroing is done within the filesystem preferably by converting the

 range into unwritten extents. This approach means that the specified

 range will not be physically zeroed out on the device (except for par?

 tial blocks at the either end of the range), and I/O is (otherwise) re? Page 3/6

 quired only to update metadata.

 If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the

 behavior of the call is similar, but the file size will not be changed

 even if offset+len is greater than the file size. This behavior is the

 same as when preallocating space with FALLOC_FL_KEEP_SIZE specified.

 Not all filesystems support FALLOC_FL_ZERO_RANGE; if a filesystem

 doesn't support the operation, an error is returned. The operation is

 supported on at least the following filesystems:

 * XFS (since Linux 3.15)

 * ext4, for extent-based files (since Linux 3.15)

 * SMB3 (since Linux 3.17)

 * Btrfs (since Linux 4.16)

 Increasing file space

 Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1)

 in mode increases the file space by inserting a hole within the file

 size without overwriting any existing data. The hole will start at

 offset and continue for len bytes. When inserting the hole inside

 file, the contents of the file starting at offset will be shifted up?

 ward (i.e., to a higher file offset) by len bytes. Inserting a hole

 inside a file increases the file size by len bytes.

 This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regard?

 ing the granularity of the operation. If the granularity requirements

 are not met, fallocate() fails with the error EINVAL. If the offset is

 equal to or greater than the end of file, an error is returned. For

 such operations (i.e., inserting a hole at the end of file), ftrun?

 cate(2) should be used.

 No other flags may be specified in mode in conjunction with FAL?

 LOC_FL_INSERT_RANGE.

 FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that

 support this operation include XFS (since Linux 4.1) and ext4 (since

 Linux 4.2).

RETURN VALUE

 On success, fallocate() returns zero. On error, -1 is returned and er? Page 4/6

 rno is set to indicate the error.

ERRORS

 EBADF fd is not a valid file descriptor, or is not opened for writing.

 EFBIG offset+len exceeds the maximum file size.

 EFBIG mode is FALLOC_FL_INSERT_RANGE, and the current file size+len

 exceeds the maximum file size.

 EINTR A signal was caught during execution; see signal(7).

 EINVAL offset was less than 0, or len was less than or equal to 0.

 EINVAL mode is FALLOC_FL_COLLAPSE_RANGE and the range specified by off?

 set plus len reaches or passes the end of the file.

 EINVAL mode is FALLOC_FL_INSERT_RANGE and the range specified by offset

 reaches or passes the end of the file.

 EINVAL mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE, but

 either offset or len is not a multiple of the filesystem block

 size.

 EINVAL mode contains one of FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN?

 SERT_RANGE and also other flags; no other flags are permitted

 with FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE.

 EINVAL mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_ZERO_RANGE or FAL?

 LOC_FL_INSERT_RANGE, but the file referred to by fd is not a

 regular file.

 EIO An I/O error occurred while reading from or writing to a

 filesystem.

 ENODEV fd does not refer to a regular file or a directory. (If fd is a

 pipe or FIFO, a different error results.)

 ENOSPC There is not enough space left on the device containing the file

 referred to by fd.

 ENOSYS This kernel does not implement fallocate().

 EOPNOTSUPP

 The filesystem containing the file referred to by fd does not

 support this operation; or the mode is not supported by the

 filesystem containing the file referred to by fd.

 EPERM The file referred to by fd is marked immutable (see chattr(1)). Page 5/6

 EPERM mode specifies FALLOC_FL_PUNCH_HOLE or FALLOC_FL_COLLAPSE_RANGE

 or FALLOC_FL_INSERT_RANGE and the file referred to by fd is

 marked append-only (see chattr(1)).

 EPERM The operation was prevented by a file seal; see fcntl(2).

 ESPIPE fd refers to a pipe or FIFO.

 ETXTBSY

 mode specifies FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN?

 SERT_RANGE, but the file referred to by fd is currently being

 executed.

VERSIONS

 fallocate() is available on Linux since kernel 2.6.23. Support is pro?

 vided by glibc since version 2.10. The FALLOC_FL_* flags are defined

 in glibc headers only since version 2.18.

CONFORMING TO

 fallocate() is Linux-specific.

SEE ALSO

 fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-11-19 FALLOCATE(2)

Page 6/6

