
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ext4.5' command

$ man ext4.5

EXT4(5) File Formats Manual EXT4(5)

NAME

 ext2 - the second extended file system

 ext3 - the third extended file system

 ext4 - the fourth extended file system

DESCRIPTION

 The second, third, and fourth extended file systems, or ext2, ext3, and

 ext4 as they are commonly known, are Linux file systems that have his?

 torically been the default file system for many Linux distributions.

 They are general purpose file systems that have been designed for ex?

 tensibility and backwards compatibility. In particular, file systems

 previously intended for use with the ext2 and ext3 file systems can be

 mounted using the ext4 file system driver, and indeed in many modern

 Linux distributions, the ext4 file system driver has been configured to

 handle mount requests for ext2 and ext3 file systems.

RED HAT ENTERPRISE LINUX 9

 The Ext4 file system is fully supported by Red Hat when using default

 mke2fs and mount options. In addition, the following non-default mke2fs

 features and mount options are also fully supported.

Non-default features:

 project

 quota

 mmp Page 1/19

Non-default mount options:

 bsddf|minixdf

 grpid|bsdgroups and nogrpid|sysvgroups

 resgid=n and resuid=n

 errors={continue|remount-ro|panic}

 commit=nrsec

 max_batch_time=usec

 min_batch_time=usec

 grpquota|noquota|quota|usrquota

 prjquota

 dax

 lazytime|nolazytime

 discard|nodiscard

 init_itable|noinit_itable

 jqfmt={vfsold|vfsv0|vfsv1}

 usrjquota=aquota.user|grpjquota=aquota.group

 For more information on features and mount options, see the ext4 man

 page. Ext4 features and mount options not listed above may not be fully

 supported by Red Hat. If your workload requires a feature or mount op?

 tion that is not fully in this Red Hat release, contact Red Hat support

 to evaluate it for inclusion in our supported list.

FILE SYSTEM FEATURES

 A file system formatted for ext2, ext3, or ext4 can have some collec?

 tion of the following file system feature flags enabled. Some of these

 features are not supported by all implementations of the ext2, ext3,

 and ext4 file system drivers, depending on Linux kernel version in use.

 On other operating systems, such as the GNU/HURD or FreeBSD, only a

 very restrictive set of file system features may be supported in their

 implementations of ext2.

 64bit

 Enables the file system to be larger than 2^32 blocks. This

 feature is set automatically, as needed, but it can be useful to

 specify this feature explicitly if the file system might need to Page 2/19

 be resized larger than 2^32 blocks, even if it was smaller than

 that threshold when it was originally created. Note that some

 older kernels and older versions of e2fsprogs will not support

 file systems with this ext4 feature enabled.

 bigalloc

 This ext4 feature enables clustered block allocation, so that

 the unit of allocation is a power of two number of blocks. That

 is, each bit in the what had traditionally been known as the

 block allocation bitmap now indicates whether a cluster is in

 use or not, where a cluster is by default composed of 16 blocks.

 This feature can decrease the time spent on doing block alloca?

 tion and brings smaller fragmentation, especially for large

 files. The size can be specified using the mke2fs -C option.

 Warning: The bigalloc feature is still under development, and

 may not be fully supported with your kernel or may have various

 bugs. Please see the web page http://ext4.wiki.kernel.org/in?

 dex.php/Bigalloc for details. May clash with delayed allocation

 (see nodelalloc mount option).

 This feature requires that the extent feature be enabled.

 casefold

 This ext4 feature provides file system level character encoding

 support for directories with the casefold (+F) flag enabled.

 This feature is name-preserving on the disk, but it allows ap?

 plications to lookup for a file in the file system using an en?

 coding equivalent version of the file name.

 dir_index

 Use hashed b-trees to speed up name lookups in large directo?

 ries. This feature is supported by ext3 and ext4 file systems,

 and is ignored by ext2 file systems.

 dir_nlink

 Normally, ext4 allows an inode to have no more than 65,000 hard

 links. This applies to regular files as well as directories,

 which means that there can be no more than 64,998 subdirectories Page 3/19

 in a directory (because each of the '.' and '..' entries, as

 well as the directory entry for the directory in its parent di?

 rectory counts as a hard link). This feature lifts this limit

 by causing ext4 to use a link count of 1 to indicate that the

 number of hard links to a directory is not known when the link

 count might exceed the maximum count limit.

 ea_inode

 Normally, a file's extended attributes and associated metadata

 must fit within the inode or the inode's associated extended at?

 tribute block. This feature allows the value of each extended

 attribute to be placed in the data blocks of a separate inode if

 necessary, increasing the limit on the size and number of ex?

 tended attributes per file.

 encrypt

 Enables support for file-system level encryption of data blocks

 and file names. The inode metadata (timestamps, file size,

 user/group ownership, etc.) is not encrypted.

 This feature is most useful on file systems with multiple users,

 or where not all files should be encrypted. In many use cases,

 especially on single-user systems, encryption at the block de?

 vice layer using dm-crypt may provide much better security.

 ext_attr

 This feature enables the use of extended attributes. This fea?

 ture is supported by ext2, ext3, and ext4.

 extent

 This ext4 feature allows the mapping of logical block numbers

 for a particular inode to physical blocks on the storage device

 to be stored using an extent tree, which is a more efficient

 data structure than the traditional indirect block scheme used

 by the ext2 and ext3 file systems. The use of the extent tree

 decreases metadata block overhead, improves file system perfor?

 mance, and decreases the needed to run e2fsck(8) on the file

 system. (Note: both extent and extents are accepted as valid Page 4/19

 names for this feature for historical/backwards compatibility

 reasons.)

 extra_isize

 This ext4 feature reserves a specific amount of space in each

 inode for extended metadata such as nanosecond timestamps and

 file creation time, even if the current kernel does not cur?

 rently need to reserve this much space. Without this feature,

 the kernel will reserve the amount of space for features it cur?

 rently needs, and the rest may be consumed by extended at?

 tributes.

 For this feature to be useful the inode size must be 256 bytes

 in size or larger.

 filetype

 This feature enables the storage of file type information in di?

 rectory entries. This feature is supported by ext2, ext3, and

 ext4.

 flex_bg

 This ext4 feature allows the per-block group metadata (alloca?

 tion bitmaps and inode tables) to be placed anywhere on the

 storage media. In addition, mke2fs will place the per-block

 group metadata together starting at the first block group of

 each "flex_bg group". The size of the flex_bg group can be

 specified using the -G option.

 has_journal

 Create a journal to ensure file system consistency even across

 unclean shutdowns. Setting the file system feature is equiva?

 lent to using the -j option with mke2fs or tune2fs. This fea?

 ture is supported by ext3 and ext4, and ignored by the ext2 file

 system driver.

 huge_file

 This ext4 feature allows files to be larger than 2 terabytes in

 size.

 inline_data Page 5/19

 Allow data to be stored in the inode and extended attribute

 area.

 journal_dev

 This feature is enabled on the superblock found on an external

 journal device. The block size for the external journal must be

 the same as the file system which uses it.

 The external journal device can be used by a file system by

 specifying the -J device=<external-device> option to mke2fs(8)

 or tune2fs(8).

 large_dir

 This feature increases the limit on the number of files per di?

 rectory by raising the maximum size of directories and, for

 hashed b-tree directories (see dir_index), the maximum height of

 the hashed b-tree used to store the directory entries.

 large_file

 This feature flag is set automatically by modern kernels when a

 file larger than 2 gigabytes is created. Very old kernels could

 not handle large files, so this feature flag was used to pro?

 hibit those kernels from mounting file systems that they could

 not understand.

 metadata_csum

 This ext4 feature enables metadata checksumming. This feature

 stores checksums for all of the file system metadata (su?

 perblock, group descriptor blocks, inode and block bitmaps, di?

 rectories, and extent tree blocks). The checksum algorithm used

 for the metadata blocks is different than the one used for group

 descriptors with the uninit_bg feature. These two features are

 incompatible and metadata_csum will be used preferentially in?

 stead of uninit_bg.

 metadata_csum_seed

 This feature allows the file system to store the metadata check?

 sum seed in the superblock, which allows the administrator to

 change the UUID of a file system using the metadata_csum feature Page 6/19

 while it is mounted.

 meta_bg

 This ext4 feature allows file systems to be resized on-line

 without explicitly needing to reserve space for growth in the

 size of the block group descriptors. This scheme is also used

 to resize file systems which are larger than 2^32 blocks. It is

 not recommended that this feature be set when a file system is

 created, since this alternate method of storing the block group

 descriptors will slow down the time needed to mount the file

 system, and newer kernels can automatically set this feature as

 necessary when doing an online resize and no more reserved space

 is available in the resize inode.

 mmp

 This ext4 feature provides multiple mount protection (MMP). MMP

 helps to protect the file system from being multiply mounted and

 is useful in shared storage environments.

 project

 This ext4 feature provides project quota support. With this fea?

 ture, the project ID of inode will be managed when the file sys?

 tem is mounted.

 quota

 Create quota inodes (inode #3 for userquota and inode #4 for

 group quota) and set them in the superblock. With this feature,

 the quotas will be enabled automatically when the file system is

 mounted.

 Causes the quota files (i.e., user.quota and group.quota which

 existed in the older quota design) to be hidden inodes.

 resize_inode

 This file system feature indicates that space has been reserved

 so that the block group descriptor table can be extended while

 resizing a mounted file system. The online resize operation is

 carried out by the kernel, triggered by resize2fs(8). By de?

 fault mke2fs will attempt to reserve enough space so that the Page 7/19

 file system may grow to 1024 times its initial size. This can

 be changed using the resize extended option.

 This feature requires that the sparse_super or sparse_super2

 feature be enabled.

 sparse_super

 This file system feature is set on all modern ext2, ext3, and

 ext4 file systems. It indicates that backup copies of the su?

 perblock and block group descriptors are present only in a few

 block groups, not all of them.

 sparse_super2

 This feature indicates that there will only be at most two

 backup superblocks and block group descriptors. The block

 groups used to store the backup superblock(s) and blockgroup de?

 scriptor(s) are stored in the superblock, but typically, one

 will be located at the beginning of block group #1, and one in

 the last block group in the file system. This feature is essen?

 tially a more extreme version of sparse_super and is designed to

 allow a much larger percentage of the disk to have contiguous

 blocks available for data files.

 stable_inodes

 Marks the file system's inode numbers and UUID as stable. re?

 size2fs(8) will not allow shrinking a file system with this fea?

 ture, nor will tune2fs(8) allow changing its UUID. This feature

 allows the use of specialized encryption settings that make use

 of the inode numbers and UUID. Note that the encrypt feature

 still needs to be enabled separately. stable_inodes is a "com?

 pat" feature, so old kernels will allow it.

 uninit_bg

 This ext4 file system feature indicates that the block group de?

 scriptors will be protected using checksums, making it safe for

 mke2fs(8) to create a file system without initializing all of

 the block groups. The kernel will keep a high watermark of un?

 used inodes, and initialize inode tables and blocks lazily. Page 8/19

 This feature speeds up the time to check the file system using

 e2fsck(8), and it also speeds up the time required for mke2fs(8)

 to create the file system.

 verity

 Enables support for verity protected files. Verity files are

 readonly, and their data is transparently verified against a

 Merkle tree hidden past the end of the file. Using the Merkle

 tree's root hash, a verity file can be efficiently authenti?

 cated, independent of the file's size.

 This feature is most useful for authenticating important read-

 only files on read-write file systems. If the file system it?

 self is read-only, then using dm-verity to authenticate the en?

 tire block device may provide much better security.

MOUNT OPTIONS

 This section describes mount options which are specific to ext2, ext3,

 and ext4. Other generic mount options may be used as well; see

 mount(8) for details.

Mount options for ext2

 The `ext2' file system is the standard Linux file system. Since Linux

 2.5.46, for most mount options the default is determined by the file

 system superblock. Set them with tune2fs(8).

 acl|noacl

 Support POSIX Access Control Lists (or not). See the acl(5)

 manual page.

 bsddf|minixdf

 Set the behavior for the statfs system call. The minixdf behav?

 ior is to return in the f_blocks field the total number of

 blocks of the file system, while the bsddf behavior (which is

 the default) is to subtract the overhead blocks used by the ext2

 file system and not available for file storage. Thus

 % mount /k -o minixdf; df /k; umount /k

 File System 1024-blocks Used Available Capacity Mounted on

 /dev/sda6 2630655 86954 2412169 3% /k Page 9/19

 % mount /k -o bsddf; df /k; umount /k

 File System 1024-blocks Used Available Capacity Mounted on

 /dev/sda6 2543714 13 2412169 0% /k

 (Note that this example shows that one can add command line op?

 tions to the options given in /etc/fstab.)

 check=none or nocheck

 No checking is done at mount time. This is the default. This is

 fast. It is wise to invoke e2fsck(8) every now and then, e.g.

 at boot time. The non-default behavior is unsupported

 (check=normal and check=strict options have been removed). Note

 that these mount options don't have to be supported if ext4 ker?

 nel driver is used for ext2 and ext3 file systems.

 debug Print debugging info upon each (re)mount.

 errors={continue|remount-ro|panic}

 Define the behavior when an error is encountered. (Either ig?

 nore errors and just mark the file system erroneous and con?

 tinue, or remount the file system read-only, or panic and halt

 the system.) The default is set in the file system superblock,

 and can be changed using tune2fs(8).

 grpid|bsdgroups and nogrpid|sysvgroups

 These options define what group id a newly created file gets.

 When grpid is set, it takes the group id of the directory in

 which it is created; otherwise (the default) it takes the fsgid

 of the current process, unless the directory has the setgid bit

 set, in which case it takes the gid from the parent directory,

 and also gets the setgid bit set if it is a directory itself.

 grpquota|noquota|quota|usrquota

 The usrquota (same as quota) mount option enables user quota

 support on the file system. grpquota enables group quotas sup?

 port. You need the quota utilities to actually enable and manage

 the quota system.

 nouid32

 Disables 32-bit UIDs and GIDs. This is for interoperability Page 10/19

 with older kernels which only store and expect 16-bit values.

 oldalloc or orlov

 Use old allocator or Orlov allocator for new inodes. Orlov is

 default.

 resgid=n and resuid=n

 The ext2 file system reserves a certain percentage of the avail?

 able space (by default 5%, see mke2fs(8) and tune2fs(8)). These

 options determine who can use the reserved blocks. (Roughly:

 whoever has the specified uid, or belongs to the specified

 group.)

 sb=n Instead of using the normal superblock, use an alternative su?

 perblock specified by n. This option is normally used when the

 primary superblock has been corrupted. The location of backup

 superblocks is dependent on the file system's blocksize, the

 number of blocks per group, and features such as sparse_super.

 Additional backup superblocks can be determined by using the

 mke2fs program using the -n option to print out where the su?

 perblocks exist, supposing mke2fs is supplied with arguments

 that are consistent with the file system's layout (e.g. block?

 size, blocks per group, sparse_super, etc.).

 The block number here uses 1 k units. Thus, if you want to use

 logical block 32768 on a file system with 4 k blocks, use

 "sb=131072".

 user_xattr|nouser_xattr

 Support "user." extended attributes (or not).

Mount options for ext3

 The ext3 file system is a version of the ext2 file system which has

 been enhanced with journaling. It supports the same options as ext2 as

 well as the following additions:

 journal_dev=devnum/journal_path=path

 When the external journal device's major/minor numbers have

 changed, these options allow the user to specify the new journal

 location. The journal device is identified either through its Page 11/19

 new major/minor numbers encoded in devnum, or via a path to the

 device.

 norecovery/noload

 Don't load the journal on mounting. Note that if the file sys?

 tem was not unmounted cleanly, skipping the journal replay will

 lead to the file system containing inconsistencies that can lead

 to any number of problems.

 data={journal|ordered|writeback}

 Specifies the journaling mode for file data. Metadata is always

 journaled. To use modes other than ordered on the root file

 system, pass the mode to the kernel as boot parameter, e.g.

 rootflags=data=journal.

 journal

 All data is committed into the journal prior to being

 written into the main file system.

 ordered

 This is the default mode. All data is forced directly

 out to the main file system prior to its metadata being

 committed to the journal.

 writeback

 Data ordering is not preserved ? data may be written into

 the main file system after its metadata has been commit?

 ted to the journal. This is rumoured to be the highest-

 throughput option. It guarantees internal file system

 integrity, however it can allow old data to appear in

 files after a crash and journal recovery.

 data_err=ignore

 Just print an error message if an error occurs in a file data

 buffer in ordered mode.

 data_err=abort

 Abort the journal if an error occurs in a file data buffer in

 ordered mode.

 barrier=0 / barrier=1 Page 12/19

 This disables / enables the use of write barriers in the jbd

 code. barrier=0 disables, barrier=1 enables (default). This

 also requires an IO stack which can support barriers, and if jbd

 gets an error on a barrier write, it will disable barriers again

 with a warning. Write barriers enforce proper on-disk ordering

 of journal commits, making volatile disk write caches safe to

 use, at some performance penalty. If your disks are battery-

 backed in one way or another, disabling barriers may safely im?

 prove performance.

 commit=nrsec

 Start a journal commit every nrsec seconds. The default value

 is 5 seconds. Zero means default.

 user_xattr

 Enable Extended User Attributes. See the attr(5) manual page.

 jqfmt={vfsold|vfsv0|vfsv1}

 Apart from the old quota system (as in ext2, jqfmt=vfsold aka

 version 1 quota) ext3 also supports journaled quotas (version 2

 quota). jqfmt=vfsv0 or jqfmt=vfsv1 enables journaled quotas.

 Journaled quotas have the advantage that even after a crash no

 quota check is required. When the quota file system feature is

 enabled, journaled quotas are used automatically, and this mount

 option is ignored.

 usrjquota=aquota.user|grpjquota=aquota.group

 For journaled quotas (jqfmt=vfsv0 or jqfmt=vfsv1), the mount op?

 tions usrjquota=aquota.user and grpjquota=aquota.group are re?

 quired to tell the quota system which quota database files to

 use. When the quota file system feature is enabled, journaled

 quotas are used automatically, and this mount option is ignored.

Mount options for ext4

 The ext4 file system is an advanced level of the ext3 file system which

 incorporates scalability and reliability enhancements for supporting

 large file system.

 The options journal_dev, journal_path, norecovery, noload, data, com? Page 13/19

 mit, orlov, oldalloc, [no]user_xattr, [no]acl, bsddf, minixdf, debug,

 errors, data_err, grpid, bsdgroups, nogrpid, sysvgroups, resgid, re?

 suid, sb, quota, noquota, nouid32, grpquota, usrquota, usrjquota, gr?

 pjquota, and jqfmt are backwardly compatible with ext3 or ext2.

 journal_checksum | nojournal_checksum

 The journal_checksum option enables checksumming of the journal

 transactions. This will allow the recovery code in e2fsck and

 the kernel to detect corruption in the kernel. It is a compati?

 ble change and will be ignored by older kernels.

 journal_async_commit

 Commit block can be written to disk without waiting for descrip?

 tor blocks. If enabled older kernels cannot mount the device.

 This will enable 'journal_checksum' internally.

 barrier=0 / barrier=1 / barrier / nobarrier

 These mount options have the same effect as in ext3. The mount

 options "barrier" and "nobarrier" are added for consistency with

 other ext4 mount options.

 The ext4 file system enables write barriers by default.

 inode_readahead_blks=n

 This tuning parameter controls the maximum number of inode table

 blocks that ext4's inode table readahead algorithm will pre-read

 into the buffer cache. The value must be a power of 2. The de?

 fault value is 32 blocks.

 stripe=n

 Number of file system blocks that mballoc will try to use for

 allocation size and alignment. For RAID5/6 systems this should

 be the number of data disks * RAID chunk size in file system

 blocks.

 delalloc

 Deferring block allocation until write-out time.

 nodelalloc

 Disable delayed allocation. Blocks are allocated when data is

 copied from user to page cache. Page 14/19

 max_batch_time=usec

 Maximum amount of time ext4 should wait for additional file sys?

 tem operations to be batch together with a synchronous write op?

 eration. Since a synchronous write operation is going to force a

 commit and then a wait for the I/O complete, it doesn't cost

 much, and can be a huge throughput win, we wait for a small

 amount of time to see if any other transactions can piggyback on

 the synchronous write. The algorithm used is designed to auto?

 matically tune for the speed of the disk, by measuring the

 amount of time (on average) that it takes to finish committing a

 transaction. Call this time the "commit time". If the time that

 the transaction has been running is less than the commit time,

 ext4 will try sleeping for the commit time to see if other oper?

 ations will join the transaction. The commit time is capped by

 the max_batch_time, which defaults to 15000 ?s (15 ms). This op?

 timization can be turned off entirely by setting max_batch_time

 to 0.

 min_batch_time=usec

 This parameter sets the commit time (as described above) to be

 at least min_batch_time. It defaults to zero microseconds. In?

 creasing this parameter may improve the throughput of multi-

 threaded, synchronous workloads on very fast disks, at the cost

 of increasing latency.

 journal_ioprio=prio

 The I/O priority (from 0 to 7, where 0 is the highest priority)

 which should be used for I/O operations submitted by kjournald2

 during a commit operation. This defaults to 3, which is a

 slightly higher priority than the default I/O priority.

 abort Simulate the effects of calling ext4_abort() for debugging pur?

 poses. This is normally used while remounting a file system

 which is already mounted.

 auto_da_alloc|noauto_da_alloc

 Many broken applications don't use fsync() when replacing exist? Page 15/19

 ing files via patterns such as

 fd = open("foo.new")/write(fd,...)/close(fd)/ rename("foo.new",

 "foo")

 or worse yet

 fd = open("foo", O_TRUNC)/write(fd,...)/close(fd).

 If auto_da_alloc is enabled, ext4 will detect the replace-via-

 rename and replace-via-truncate patterns and force that any de?

 layed allocation blocks are allocated such that at the next

 journal commit, in the default data=ordered mode, the data

 blocks of the new file are forced to disk before the rename()

 operation is committed. This provides roughly the same level of

 guarantees as ext3, and avoids the "zero-length" problem that

 can happen when a system crashes before the delayed allocation

 blocks are forced to disk.

 noinit_itable

 Do not initialize any uninitialized inode table blocks in the

 background. This feature may be used by installation CD's so

 that the install process can complete as quickly as possible;

 the inode table initialization process would then be deferred

 until the next time the file system is mounted.

 init_itable=n

 The lazy itable init code will wait n times the number of mil?

 liseconds it took to zero out the previous block group's inode

 table. This minimizes the impact on system performance while the

 file system's inode table is being initialized.

 discard/nodiscard

 Controls whether ext4 should issue discard/TRIM commands to the

 underlying block device when blocks are freed. This is useful

 for SSD devices and sparse/thinly-provisioned LUNs, but it is

 off by default until sufficient testing has been done.

 block_validity/noblock_validity

 This option enables/disables the in-kernel facility for tracking

 file system metadata blocks within internal data structures. Page 16/19

 This allows multi-block allocator and other routines to quickly

 locate extents which might overlap with file system metadata

 blocks. This option is intended for debugging purposes and since

 it negatively affects the performance, it is off by default.

 dioread_lock/dioread_nolock

 Controls whether or not ext4 should use the DIO read locking. If

 the dioread_nolock option is specified ext4 will allocate unini?

 tialized extent before buffer write and convert the extent to

 initialized after IO completes. This approach allows ext4 code

 to avoid using inode mutex, which improves scalability on high

 speed storages. However this does not work with data journaling

 and dioread_nolock option will be ignored with kernel warning.

 Note that dioread_nolock code path is only used for extent-based

 files. Because of the restrictions this options comprises it is

 off by default (e.g. dioread_lock).

 max_dir_size_kb=n

 This limits the size of the directories so that any attempt to

 expand them beyond the specified limit in kilobytes will cause

 an ENOSPC error. This is useful in memory-constrained environ?

 ments, where a very large directory can cause severe performance

 problems or even provoke the Out Of Memory killer. (For example,

 if there is only 512 MB memory available, a 176 MB directory may

 seriously cramp the system's style.)

 i_version

 Enable 64-bit inode version support. This option is off by de?

 fault.

 nombcache

 This option disables use of mbcache for extended attribute dedu?

 plication. On systems where extended attributes are rarely or

 never shared between files, use of mbcache for deduplication

 adds unnecessary computational overhead.

 prjquota

 The prjquota mount option enables project quota support on the Page 17/19

 file system. You need the quota utilities to actually enable

 and manage the quota system. This mount option requires the

 project file system feature.

FILE ATTRIBUTES

 The ext2, ext3, and ext4 file systems support setting the following

 file attributes on Linux systems using the chattr(1) utility:

 a - append only

 A - no atime updates

 d - no dump

 D - synchronous directory updates

 i - immutable

 S - synchronous updates

 u - undeletable

 In addition, the ext3 and ext4 file systems support the following flag:

 j - data journaling

 Finally, the ext4 file system also supports the following flag:

 e - extents format

 For descriptions of these attribute flags, please refer to the

 chattr(1) man page.

KERNEL SUPPORT

 This section lists the file system driver (e.g., ext2, ext3, ext4) and

 upstream kernel version where a particular file system feature was sup?

 ported. Note that in some cases the feature was present in earlier

 kernel versions, but there were known, serious bugs. In other cases

 the feature may still be considered in an experimental state. Finally,

 note that some distributions may have backported features into older

 kernels; in particular the kernel versions in certain "enterprise dis?

 tributions" can be extremely misleading.

 filetype ext2, 2.2.0

 sparse_super ext2, 2.2.0

 large_file ext2, 2.2.0

 has_journal ext3, 2.4.15

 ext_attr ext2/ext3, 2.6.0 Page 18/19

 dir_index ext3, 2.6.0

 resize_inode ext3, 2.6.10 (online resizing)

 64bit ext4, 2.6.28

 dir_nlink ext4, 2.6.28

 extent ext4, 2.6.28

 extra_isize ext4, 2.6.28

 flex_bg ext4, 2.6.28

 huge_file ext4, 2.6.28

 meta_bg ext4, 2.6.28

 uninit_bg ext4, 2.6.28

 mmp ext4, 3.0

 bigalloc ext4, 3.2

 quota ext4, 3.6

 inline_data ext4, 3.8

 sparse_super2 ext4, 3.16

 metadata_csum ext4, 3.18

 encrypt ext4, 4.1

 metadata_csum_seed ext4, 4.4

 project ext4, 4.5

 ea_inode ext4, 4.13

 large_dir ext4, 4.13

 casefold ext4, 5.2

 verity ext4, 5.4

 stable_inodes ext4, 5.5

SEE ALSO

 mke2fs(8), mke2fs.conf(5), e2fsck(8), dumpe2fs(8), tune2fs(8), de?

 bugfs(8), mount(8), chattr(1)

E2fsprogs version 1.46.5 December 2021 EXT4(5)

Page 19/19

