
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'execveat.2' command

$ man execveat.2

EXECVEAT(2) Linux Programmer's Manual EXECVEAT(2)

NAME

 execveat - execute program relative to a directory file descriptor

SYNOPSIS

 #include <unistd.h>

 int execveat(int dirfd, const char *pathname,

 char *const argv[], char *const envp[],

 int flags);

DESCRIPTION

 The execveat() system call executes the program referred to by the com?

 bination of dirfd and pathname. It operates in exactly the same way as

 execve(2), except for the differences described in this manual page.

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd

 (rather than relative to the current working directory of the calling

 process, as is done by execve(2) for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then

 pathname is interpreted relative to the current working directory of

 the calling process (like execve(2)).

 If pathname is absolute, then dirfd is ignored.

 If pathname is an empty string and the AT_EMPTY_PATH flag is specified,

 then the file descriptor dirfd specifies the file to be executed (i.e.,

 dirfd refers to an executable file, rather than a directory). Page 1/3

 The flags argument is a bit mask that can include zero or more of the

 following flags:

 AT_EMPTY_PATH

 If pathname is an empty string, operate on the file referred to

 by dirfd (which may have been obtained using the open(2) O_PATH

 flag).

 AT_SYMLINK_NOFOLLOW

 If the file identified by dirfd and a non-NULL pathname is a

 symbolic link, then the call fails with the error ELOOP.

RETURN VALUE

 On success, execveat() does not return. On error, -1 is returned, and

 errno is set appropriately.

ERRORS

 The same errors that occur for execve(2) can also occur for execveat().

 The following additional errors can occur for execveat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL Invalid flag specified in flags.

 ELOOP flags includes AT_SYMLINK_NOFOLLOW and the file identified by

 dirfd and a non-NULL pathname is a symbolic link.

 ENOENT The program identified by dirfd and pathname requires the use of

 an interpreter program (such as a script starting with "#!"),

 but the file descriptor dirfd was opened with the O_CLOEXEC

 flag, with the result that the program file is inaccessible to

 the launched interpreter. See BUGS.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to

 a file other than a directory.

VERSIONS

 execveat() was added to Linux in kernel 3.19. GNU C library support is

 pending.

CONFORMING TO

 The execveat() system call is Linux-specific.

NOTES Page 2/3

 In addition to the reasons explained in openat(2), the execveat() sys?

 tem call is also needed to allow fexecve(3) to be implemented on sys?

 tems that do not have the /proc filesystem mounted.

 When asked to execute a script file, the argv[0] that is passed to the

 script interpreter is a string of the form /dev/fd/N or /dev/fd/N/P,

 where N is the number of the file descriptor passed via the dirfd argu?

 ment. A string of the first form occurs when AT_EMPTY_PATH is em?

 ployed. A string of the second form occurs when the script is speci?

 fied via both dirfd and pathname; in this case, P is the value given in

 pathname.

 For the same reasons described in fexecve(3), the natural idiom when

 using execveat() is to set the close-on-exec flag on dirfd. (But see

 BUGS.)

BUGS

 The ENOENT error described above means that it is not possible to set

 the close-on-exec flag on the file descriptor given to a call of the

 form:

 execveat(fd, "", argv, envp, AT_EMPTY_PATH);

 However, the inability to set the close-on-exec flag means that a file

 descriptor referring to the script leaks through to the script itself.

 As well as wasting a file descriptor, this leakage can lead to file-de?

 scriptor exhaustion in scenarios where scripts recursively employ ex?

 ecveat().

SEE ALSO

 execve(2), openat(2), fexecve(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 EXECVEAT(2)

Page 3/3

