
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'execve.2' command

$ man execve.2

EXECVE(2) Linux Programmer's Manual EXECVE(2)

NAME

 execve - execute program

SYNOPSIS

 #include <unistd.h>

 int execve(const char *pathname, char *const argv[],

 char *const envp[]);

DESCRIPTION

 execve() executes the program referred to by pathname. This causes the

 program that is currently being run by the calling process to be re?

 placed with a new program, with newly initialized stack, heap, and

 (initialized and uninitialized) data segments.

 pathname must be either a binary executable, or a script starting with

 a line of the form:

 #!interpreter [optional-arg]

 For details of the latter case, see "Interpreter scripts" below.

 argv is an array of pointers to strings passed to the new program as

 its command-line arguments. By convention, the first of these strings

 (i.e., argv[0]) should contain the filename associated with the file

 being executed. The argv array must be terminated by a NULL pointer.

 (Thus, in the new program, argv[argc] will be NULL.)

 envp is an array of pointers to strings, conventionally of the form

 key=value, which are passed as the environment of the new program. The Page 1/12

 envp array must be terminated by a NULL pointer.

 The argument vector and environment can be accessed by the new pro?

 gram's main function, when it is defined as:

 int main(int argc, char *argv[], char *envp[])

 Note, however, that the use of a third argument to the main function is

 not specified in POSIX.1; according to POSIX.1, the environment should

 be accessed via the external variable environ(7).

 execve() does not return on success, and the text, initialized data,

 uninitialized data (bss), and stack of the calling process are over?

 written according to the contents of the newly loaded program.

 If the current program is being ptraced, a SIGTRAP signal is sent to it

 after a successful execve().

 If the set-user-ID bit is set on the program file referred to by path?

 name, then the effective user ID of the calling process is changed to

 that of the owner of the program file. Similarly, if the set-group-ID

 bit is set on the program file, then the effective group ID of the

 calling process is set to the group of the program file.

 The aforementioned transformations of the effective IDs are not per?

 formed (i.e., the set-user-ID and set-group-ID bits are ignored) if any

 of the following is true:

 * the no_new_privs attribute is set for the calling thread (see

 prctl(2));

 * the underlying filesystem is mounted nosuid (the MS_NOSUID flag for

 mount(2)); or

 * the calling process is being ptraced.

 The capabilities of the program file (see capabilities(7)) are also ig?

 nored if any of the above are true.

 The effective user ID of the process is copied to the saved set-user-

 ID; similarly, the effective group ID is copied to the saved set-group-

 ID. This copying takes place after any effective ID changes that occur

 because of the set-user-ID and set-group-ID mode bits.

 The process's real UID and real GID, as well its supplementary group

 IDs, are unchanged by a call to execve(). Page 2/12

 If the executable is an a.out dynamically linked binary executable con?

 taining shared-library stubs, the Linux dynamic linker ld.so(8) is

 called at the start of execution to bring needed shared objects into

 memory and link the executable with them.

 If the executable is a dynamically linked ELF executable, the inter?

 preter named in the PT_INTERP segment is used to load the needed shared

 objects. This interpreter is typically /lib/ld-linux.so.2 for binaries

 linked with glibc (see ld-linux.so(8)).

 Effect on process attributes

 All process attributes are preserved during an execve(), except the

 following:

 * The dispositions of any signals that are being caught are reset to

 the default (signal(7)).

 * Any alternate signal stack is not preserved (sigaltstack(2)).

 * Memory mappings are not preserved (mmap(2)).

 * Attached System V shared memory segments are detached (shmat(2)).

 * POSIX shared memory regions are unmapped (shm_open(3)).

 * Open POSIX message queue descriptors are closed (mq_overview(7)).

 * Any open POSIX named semaphores are closed (sem_overview(7)).

 * POSIX timers are not preserved (timer_create(2)).

 * Any open directory streams are closed (opendir(3)).

 * Memory locks are not preserved (mlock(2), mlockall(2)).

 * Exit handlers are not preserved (atexit(3), on_exit(3)).

 * The floating-point environment is reset to the default (see

 fenv(3)).

 The process attributes in the preceding list are all specified in

 POSIX.1. The following Linux-specific process attributes are also not

 preserved during an execve():

 * The process's "dumpable" attribute is set to the value 1, unless a

 set-user-ID program, a set-group-ID program, or a program with capa?

 bilities is being executed, in which case the dumpable flag may in?

 stead be reset to the value in /proc/sys/fs/suid_dumpable, in the

 circumstances described under PR_SET_DUMPABLE in prctl(2). Note Page 3/12

 that changes to the "dumpable" attribute may cause ownership of

 files in the process's /proc/[pid] directory to change to root:root,

 as described in proc(5).

 * The prctl(2) PR_SET_KEEPCAPS flag is cleared.

 * (Since Linux 2.4.36 / 2.6.23) If a set-user-ID or set-group-ID pro?

 gram is being executed, then the parent death signal set by prctl(2)

 PR_SET_PDEATHSIG flag is cleared.

 * The process name, as set by prctl(2) PR_SET_NAME (and displayed by

 ps -o comm), is reset to the name of the new executable file.

 * The SECBIT_KEEP_CAPS securebits flag is cleared. See capabili?

 ties(7).

 * The termination signal is reset to SIGCHLD (see clone(2)).

 * The file descriptor table is unshared, undoing the effect of the

 CLONE_FILES flag of clone(2).

 Note the following further points:

 * All threads other than the calling thread are destroyed during an

 execve(). Mutexes, condition variables, and other pthreads objects

 are not preserved.

 * The equivalent of setlocale(LC_ALL, "C") is executed at program

 start-up.

 * POSIX.1 specifies that the dispositions of any signals that are ig?

 nored or set to the default are left unchanged. POSIX.1 specifies

 one exception: if SIGCHLD is being ignored, then an implementation

 may leave the disposition unchanged or reset it to the default;

 Linux does the former.

 * Any outstanding asynchronous I/O operations are canceled

 (aio_read(3), aio_write(3)).

 * For the handling of capabilities during execve(), see capabili?

 ties(7).

 * By default, file descriptors remain open across an execve(). File

 descriptors that are marked close-on-exec are closed; see the de?

 scription of FD_CLOEXEC in fcntl(2). (If a file descriptor is

 closed, this will cause the release of all record locks obtained on Page 4/12

 the underlying file by this process. See fcntl(2) for details.)

 POSIX.1 says that if file descriptors 0, 1, and 2 would otherwise be

 closed after a successful execve(), and the process would gain priv?

 ilege because the set-user-ID or set-group-ID mode bit was set on

 the executed file, then the system may open an unspecified file for

 each of these file descriptors. As a general principle, no portable

 program, whether privileged or not, can assume that these three file

 descriptors will remain closed across an execve().

 Interpreter scripts

 An interpreter script is a text file that has execute permission en?

 abled and whose first line is of the form:

 #!interpreter [optional-arg]

 The interpreter must be a valid pathname for an executable file.

 If the pathname argument of execve() specifies an interpreter script,

 then interpreter will be invoked with the following arguments:

 interpreter [optional-arg] pathname arg...

 where pathname is the absolute pathname of the file specified as the

 first argument of execve(), and arg... is the series of words pointed

 to by the argv argument of execve(), starting at argv[1]. Note that

 there is no way to get the argv[0] that was passed to the execve()

 call.

 For portable use, optional-arg should either be absent, or be specified

 as a single word (i.e., it should not contain white space); see NOTES

 below.

 Since Linux 2.6.28, the kernel permits the interpreter of a script to

 itself be a script. This permission is recursive, up to a limit of

 four recursions, so that the interpreter may be a script which is in?

 terpreted by a script, and so on.

 Limits on size of arguments and environment

 Most UNIX implementations impose some limit on the total size of the

 command-line argument (argv) and environment (envp) strings that may be

 passed to a new program. POSIX.1 allows an implementation to advertise

 this limit using the ARG_MAX constant (either defined in <limits.h> or Page 5/12

 available at run time using the call sysconf(_SC_ARG_MAX)).

 On Linux prior to kernel 2.6.23, the memory used to store the environ?

 ment and argument strings was limited to 32 pages (defined by the ker?

 nel constant MAX_ARG_PAGES). On architectures with a 4-kB page size,

 this yields a maximum size of 128 kB.

 On kernel 2.6.23 and later, most architectures support a size limit de?

 rived from the soft RLIMIT_STACK resource limit (see getrlimit(2)) that

 is in force at the time of the execve() call. (Architectures with no

 memory management unit are excepted: they maintain the limit that was

 in effect before kernel 2.6.23.) This change allows programs to have a

 much larger argument and/or environment list. For these architectures,

 the total size is limited to 1/4 of the allowed stack size. (Imposing

 the 1/4-limit ensures that the new program always has some stack

 space.) Additionally, the total size is limited to 3/4 of the value of

 the kernel constant _STK_LIM (8 Mibibytes). Since Linux 2.6.25, the

 kernel also places a floor of 32 pages on this size limit, so that,

 even when RLIMIT_STACK is set very low, applications are guaranteed to

 have at least as much argument and environment space as was provided by

 Linux 2.6.23 and earlier. (This guarantee was not provided in Linux

 2.6.23 and 2.6.24.) Additionally, the limit per string is 32 pages

 (the kernel constant MAX_ARG_STRLEN), and the maximum number of strings

 is 0x7FFFFFFF.

RETURN VALUE

 On success, execve() does not return, on error -1 is returned, and er?

 rno is set appropriately.

ERRORS

 E2BIG The total number of bytes in the environment (envp) and argument

 list (argv) is too large.

 EACCES Search permission is denied on a component of the path prefix of

 pathname or the name of a script interpreter. (See also

 path_resolution(7).)

 EACCES The file or a script interpreter is not a regular file.

 EACCES Execute permission is denied for the file or a script or ELF in? Page 6/12

 terpreter.

 EACCES The filesystem is mounted noexec.

 EAGAIN (since Linux 3.1)

 Having changed its real UID using one of the set*uid() calls,

 the caller was?and is now still?above its RLIMIT_NPROC resource

 limit (see setrlimit(2)). For a more detailed explanation of

 this error, see NOTES.

 EFAULT pathname or one of the pointers in the vectors argv or envp

 points outside your accessible address space.

 EINVAL An ELF executable had more than one PT_INTERP segment (i.e.,

 tried to name more than one interpreter).

 EIO An I/O error occurred.

 EISDIR An ELF interpreter was a directory.

 ELIBBAD

 An ELF interpreter was not in a recognized format.

 ELOOP Too many symbolic links were encountered in resolving pathname

 or the name of a script or ELF interpreter.

 ELOOP The maximum recursion limit was reached during recursive script

 interpretation (see "Interpreter scripts", above). Before Linux

 3.8, the error produced for this case was ENOEXEC.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached.

 ENAMETOOLONG

 pathname is too long.

 ENFILE The system-wide limit on the total number of open files has been

 reached.

 ENOENT The file pathname or a script or ELF interpreter does not exist.

 ENOEXEC

 An executable is not in a recognized format, is for the wrong

 architecture, or has some other format error that means it can?

 not be executed.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR Page 7/12

 A component of the path prefix of pathname or a script or ELF

 interpreter is not a directory.

 EPERM The filesystem is mounted nosuid, the user is not the superuser,

 and the file has the set-user-ID or set-group-ID bit set.

 EPERM The process is being traced, the user is not the superuser and

 the file has the set-user-ID or set-group-ID bit set.

 EPERM A "capability-dumb" applications would not obtain the full set

 of permitted capabilities granted by the executable file. See

 capabilities(7).

 ETXTBSY

 The specified executable was open for writing by one or more

 processes.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD. POSIX does not document the

 #! behavior, but it exists (with some variations) on other UNIX sys?

 tems.

NOTES

 One sometimes sees execve() (and the related functions described in

 exec(3)) described as "executing a new process" (or similar). This is

 a highly misleading description: there is no new process; many at?

 tributes of the calling process remain unchanged (in particular, its

 PID). All that execve() does is arrange for an existing process (the

 calling process) to execute a new program.

 Set-user-ID and set-group-ID processes can not be ptrace(2)d.

 The result of mounting a filesystem nosuid varies across Linux kernel

 versions: some will refuse execution of set-user-ID and set-group-ID

 executables when this would give the user powers they did not have al?

 ready (and return EPERM), some will just ignore the set-user-ID and

 set-group-ID bits and exec() successfully.

 On Linux, argv and envp can be specified as NULL. In both cases, this

 has the same effect as specifying the argument as a pointer to a list

 containing a single null pointer. Do not take advantage of this non?

 standard and nonportable misfeature! On many other UNIX systems, spec? Page 8/12

 ifying argv as NULL will result in an error (EFAULT). Some other UNIX

 systems treat the envp==NULL case the same as Linux.

 POSIX.1 says that values returned by sysconf(3) should be invariant

 over the lifetime of a process. However, since Linux 2.6.23, if the

 RLIMIT_STACK resource limit changes, then the value reported by

 _SC_ARG_MAX will also change, to reflect the fact that the limit on

 space for holding command-line arguments and environment variables has

 changed.

 In most cases where execve() fails, control returns to the original ex?

 ecutable image, and the caller of execve() can then handle the error.

 However, in (rare) cases (typically caused by resource exhaustion),

 failure may occur past the point of no return: the original executable

 image has been torn down, but the new image could not be completely

 built. In such cases, the kernel kills the process with a SIGSEGV

 (SIGKILL until Linux 3.17) signal.

 Interpreter scripts

 The kernel imposes a maximum length on the text that follows the "#!"

 characters at the start of a script; characters beyond the limit are

 ignored. Before Linux 5.1, the limit is 127 characters. Since Linux

 5.1, the limit is 255 characters.

 The semantics of the optional-arg argument of an interpreter script

 vary across implementations. On Linux, the entire string following the

 interpreter name is passed as a single argument to the interpreter, and

 this string can include white space. However, behavior differs on some

 other systems. Some systems use the first white space to terminate op?

 tional-arg. On some systems, an interpreter script can have multiple

 arguments, and white spaces in optional-arg are used to delimit the ar?

 guments.

 Linux (like most other modern UNIX systems) ignores the set-user-ID and

 set-group-ID bits on scripts.

 execve() and EAGAIN

 A more detailed explanation of the EAGAIN error that can occur (since

 Linux 3.1) when calling execve() is as follows. Page 9/12

 The EAGAIN error can occur when a preceding call to setuid(2), se?

 treuid(2), or setresuid(2) caused the real user ID of the process to

 change, and that change caused the process to exceed its RLIMIT_NPROC

 resource limit (i.e., the number of processes belonging to the new real

 UID exceeds the resource limit). From Linux 2.6.0 to 3.0, this caused

 the set*uid() call to fail. (Prior to 2.6, the resource limit was not

 imposed on processes that changed their user IDs.)

 Since Linux 3.1, the scenario just described no longer causes the

 set*uid() call to fail, because it too often led to security holes

 where buggy applications didn't check the return status and assumed

 that?if the caller had root privileges?the call would always succeed.

 Instead, the set*uid() calls now successfully change the real UID, but

 the kernel sets an internal flag, named PF_NPROC_EXCEEDED, to note that

 the RLIMIT_NPROC resource limit has been exceeded. If the PF_NPROC_EX?

 CEEDED flag is set and the resource limit is still exceeded at the time

 of a subsequent execve() call, that call fails with the error EAGAIN.

 This kernel logic ensures that the RLIMIT_NPROC resource limit is still

 enforced for the common privileged daemon workflow?namely, fork(2) +

 set*uid() + execve().

 If the resource limit was not still exceeded at the time of the ex?

 ecve() call (because other processes belonging to this real UID termi?

 nated between the set*uid() call and the execve() call), then the ex?

 ecve() call succeeds and the kernel clears the PF_NPROC_EXCEEDED

 process flag. The flag is also cleared if a subsequent call to fork(2)

 by this process succeeds.

 Historical

 With UNIX V6, the argument list of an exec() call was ended by 0, while

 the argument list of main was ended by -1. Thus, this argument list

 was not directly usable in a further exec() call. Since UNIX V7, both

 are NULL.

EXAMPLES

 The following program is designed to be execed by the second program

 below. It just echoes its command-line arguments, one per line. Page 10/12

 /* myecho.c */

 #include <stdio.h>

 #include <stdlib.h>

 int

 main(int argc, char *argv[])

 {

 for (int j = 0; j < argc; j++)

 printf("argv[%d]: %s\n", j, argv[j]);

 exit(EXIT_SUCCESS);

 }

 This program can be used to exec the program named in its command-line

 argument:

 /* execve.c */

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 int

 main(int argc, char *argv[])

 {

 char *newargv[] = { NULL, "hello", "world", NULL };

 char *newenviron[] = { NULL };

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 newargv[0] = argv[1];

 execve(argv[1], newargv, newenviron);

 perror("execve"); /* execve() returns only on error */

 exit(EXIT_FAILURE);

 }

 We can use the second program to exec the first as follows:

 $ cc myecho.c -o myecho

 $ cc execve.c -o execve Page 11/12

 $./execve ./myecho

 argv[0]: ./myecho

 argv[1]: hello

 argv[2]: world

 We can also use these programs to demonstrate the use of a script in?

 terpreter. To do this we create a script whose "interpreter" is our

 myecho program:

 $ cat > script

 #!./myecho script-arg

 ^D

 $ chmod +x script

 We can then use our program to exec the script:

 $./execve ./script

 argv[0]: ./myecho

 argv[1]: script-arg

 argv[2]: ./script

 argv[3]: hello

 argv[4]: world

SEE ALSO

 chmod(2), execveat(2), fork(2), get_robust_list(2), ptrace(2), exec(3),

 fexecve(3), getopt(3), system(3), capabilities(7), credentials(7), env?

 iron(7), path_resolution(7), ld.so(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 EXECVE(2)

Page 12/12

