
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'epoll_pwait.2' command

$ man epoll_pwait.2

EPOLL_WAIT(2) Linux Programmer's Manual EPOLL_WAIT(2)

NAME

 epoll_wait, epoll_pwait - wait for an I/O event on an epoll file de?

 scriptor

SYNOPSIS

 #include <sys/epoll.h>

 int epoll_wait(int epfd, struct epoll_event *events,

 int maxevents, int timeout);

 int epoll_pwait(int epfd, struct epoll_event *events,

 int maxevents, int timeout,

 const sigset_t *sigmask);

DESCRIPTION

 The epoll_wait() system call waits for events on the epoll(7) instance

 referred to by the file descriptor epfd. The buffer pointed to by

 events is used to return information from the ready list about file de?

 scriptors in the interest list that have some events available. Up to

 maxevents are returned by epoll_wait(). The maxevents argument must be

 greater than zero.

 The timeout argument specifies the number of milliseconds that

 epoll_wait() will block. Time is measured against the CLOCK_MONOTONIC

 clock.

 A call to epoll_wait() will block until either:

 ? a file descriptor delivers an event; Page 1/4

 ? the call is interrupted by a signal handler; or

 ? the timeout expires.

 Note that the timeout interval will be rounded up to the system clock

 granularity, and kernel scheduling delays mean that the blocking inter?

 val may overrun by a small amount. Specifying a timeout of -1 causes

 epoll_wait() to block indefinitely, while specifying a timeout equal to

 zero cause epoll_wait() to return immediately, even if no events are

 available.

 The struct epoll_event is defined as:

 typedef union epoll_data {

 void *ptr;

 int fd;

 uint32_t u32;

 uint64_t u64;

 } epoll_data_t;

 struct epoll_event {

 uint32_t events; /* Epoll events */

 epoll_data_t data; /* User data variable */

 };

 The data field of each returned epoll_event structure contains the same

 data as was specified in the most recent call to epoll_ctl(2)

 (EPOLL_CTL_ADD, EPOLL_CTL_MOD) for the corresponding open file descrip?

 tor.

 The events field is a bit mask that indicates the events that have oc?

 curred for the corresponding open file description. See epoll_ctl(2)

 for a list of the bits that may appear in this mask.

 epoll_pwait()

 The relationship between epoll_wait() and epoll_pwait() is analogous to

 the relationship between select(2) and pselect(2): like pselect(2),

 epoll_pwait() allows an application to safely wait until either a file

 descriptor becomes ready or until a signal is caught.

 The following epoll_pwait() call:

 ready = epoll_pwait(epfd, &events, maxevents, timeout, &sigmask); Page 2/4

 is equivalent to atomically executing the following calls:

 sigset_t origmask;

 pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);

 ready = epoll_wait(epfd, &events, maxevents, timeout);

 pthread_sigmask(SIG_SETMASK, &origmask, NULL);

 The sigmask argument may be specified as NULL, in which case

 epoll_pwait() is equivalent to epoll_wait().

RETURN VALUE

 When successful, epoll_wait() returns the number of file descriptors

 ready for the requested I/O, or zero if no file descriptor became ready

 during the requested timeout milliseconds. When an error occurs,

 epoll_wait() returns -1 and errno is set appropriately.

ERRORS

 EBADF epfd is not a valid file descriptor.

 EFAULT The memory area pointed to by events is not accessible with

 write permissions.

 EINTR The call was interrupted by a signal handler before either (1)

 any of the requested events occurred or (2) the timeout expired;

 see signal(7).

 EINVAL epfd is not an epoll file descriptor, or maxevents is less than

 or equal to zero.

VERSIONS

 epoll_wait() was added to the kernel in version 2.6. Library support

 is provided in glibc starting with version 2.3.2.

 epoll_pwait() was added to Linux in kernel 2.6.19. Library support is

 provided in glibc starting with version 2.6.

CONFORMING TO

 epoll_wait() is Linux-specific.

NOTES

 While one thread is blocked in a call to epoll_wait(), it is possible

 for another thread to add a file descriptor to the waited-upon epoll

 instance. If the new file descriptor becomes ready, it will cause the

 epoll_wait() call to unblock. Page 3/4

 If more than maxevents file descriptors are ready when epoll_wait() is

 called, then successive epoll_wait() calls will round robin through the

 set of ready file descriptors. This behavior helps avoid starvation

 scenarios, where a process fails to notice that additional file de?

 scriptors are ready because it focuses on a set of file descriptors

 that are already known to be ready.

 Note that it is possible to call epoll_wait() on an epoll instance

 whose interest list is currently empty (or whose interest list becomes

 empty because file descriptors are closed or removed from the interest

 in another thread). The call will block until some file descriptor is

 later added to the interest list (in another thread) and that file de?

 scriptor becomes ready.

BUGS

 In kernels before 2.6.37, a timeout value larger than approximately

 LONG_MAX / HZ milliseconds is treated as -1 (i.e., infinity). Thus,

 for example, on a system where sizeof(long) is 4 and the kernel HZ

 value is 1000, this means that timeouts greater than 35.79 minutes are

 treated as infinity.

 C library/kernel differences

 The raw epoll_pwait() system call has a sixth argument, size_t sigset?

 size, which specifies the size in bytes of the sigmask argument. The

 glibc epoll_pwait() wrapper function specifies this argument as a fixed

 value (equal to sizeof(sigset_t)).

SEE ALSO

 epoll_create(2), epoll_ctl(2), epoll(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 EPOLL_WAIT(2)

Page 4/4

