
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'epoll.7' command

$ man epoll.7

EPOLL(7) Linux Programmer's Manual EPOLL(7)

NAME

 epoll - I/O event notification facility

SYNOPSIS

 #include <sys/epoll.h>

DESCRIPTION

 The epoll API performs a similar task to poll(2): monitoring multiple

 file descriptors to see if I/O is possible on any of them. The epoll

 API can be used either as an edge-triggered or a level-triggered inter?

 face and scales well to large numbers of watched file descriptors.

 The central concept of the epoll API is the epoll instance, an in-ker?

 nel data structure which, from a user-space perspective, can be consid?

 ered as a container for two lists:

 ? The interest list (sometimes also called the epoll set): the set of

 file descriptors that the process has registered an interest in moni?

 toring.

 ? The ready list: the set of file descriptors that are "ready" for I/O.

 The ready list is a subset of (or, more precisely, a set of refer?

 ences to) the file descriptors in the interest list. The ready list

 is dynamically populated by the kernel as a result of I/O activity on

 those file descriptors.

 The following system calls are provided to create and manage an epoll

 instance: Page 1/9

 ? epoll_create(2) creates a new epoll instance and returns a file de?

 scriptor referring to that instance. (The more recent epoll_cre?

 ate1(2) extends the functionality of epoll_create(2).)

 ? Interest in particular file descriptors is then registered via

 epoll_ctl(2), which adds items to the interest list of the epoll in?

 stance.

 ? epoll_wait(2) waits for I/O events, blocking the calling thread if no

 events are currently available. (This system call can be thought of

 as fetching items from the ready list of the epoll instance.)

 Level-triggered and edge-triggered

 The epoll event distribution interface is able to behave both as edge-

 triggered (ET) and as level-triggered (LT). The difference between the

 two mechanisms can be described as follows. Suppose that this scenario

 happens:

 1. The file descriptor that represents the read side of a pipe (rfd) is

 registered on the epoll instance.

 2. A pipe writer writes 2 kB of data on the write side of the pipe.

 3. A call to epoll_wait(2) is done that will return rfd as a ready file

 descriptor.

 4. The pipe reader reads 1 kB of data from rfd.

 5. A call to epoll_wait(2) is done.

 If the rfd file descriptor has been added to the epoll interface using

 the EPOLLET (edge-triggered) flag, the call to epoll_wait(2) done in

 step 5 will probably hang despite the available data still present in

 the file input buffer; meanwhile the remote peer might be expecting a

 response based on the data it already sent. The reason for this is

 that edge-triggered mode delivers events only when changes occur on the

 monitored file descriptor. So, in step 5 the caller might end up wait?

 ing for some data that is already present inside the input buffer. In

 the above example, an event on rfd will be generated because of the

 write done in 2 and the event is consumed in 3. Since the read opera?

 tion done in 4 does not consume the whole buffer data, the call to

 epoll_wait(2) done in step 5 might block indefinitely. Page 2/9

 An application that employs the EPOLLET flag should use nonblocking

 file descriptors to avoid having a blocking read or write starve a task

 that is handling multiple file descriptors. The suggested way to use

 epoll as an edge-triggered (EPOLLET) interface is as follows:

 a) with nonblocking file descriptors; and

 b) by waiting for an event only after read(2) or write(2) return EA?

 GAIN.

 By contrast, when used as a level-triggered interface (the default,

 when EPOLLET is not specified), epoll is simply a faster poll(2), and

 can be used wherever the latter is used since it shares the same seman?

 tics.

 Since even with edge-triggered epoll, multiple events can be generated

 upon receipt of multiple chunks of data, the caller has the option to

 specify the EPOLLONESHOT flag, to tell epoll to disable the associated

 file descriptor after the receipt of an event with epoll_wait(2). When

 the EPOLLONESHOT flag is specified, it is the caller's responsibility

 to rearm the file descriptor using epoll_ctl(2) with EPOLL_CTL_MOD.

 If multiple threads (or processes, if child processes have inherited

 the epoll file descriptor across fork(2)) are blocked in epoll_wait(2)

 waiting on the same epoll file descriptor and a file descriptor in the

 interest list that is marked for edge-triggered (EPOLLET) notification

 becomes ready, just one of the threads (or processes) is awoken from

 epoll_wait(2). This provides a useful optimization for avoiding "thun?

 dering herd" wake-ups in some scenarios.

 Interaction with autosleep

 If the system is in autosleep mode via /sys/power/autosleep and an

 event happens which wakes the device from sleep, the device driver will

 keep the device awake only until that event is queued. To keep the de?

 vice awake until the event has been processed, it is necessary to use

 the epoll_ctl(2) EPOLLWAKEUP flag.

 When the EPOLLWAKEUP flag is set in the events field for a struct

 epoll_event, the system will be kept awake from the moment the event is

 queued, through the epoll_wait(2) call which returns the event until Page 3/9

 the subsequent epoll_wait(2) call. If the event should keep the system

 awake beyond that time, then a separate wake_lock should be taken be?

 fore the second epoll_wait(2) call.

 /proc interfaces

 The following interfaces can be used to limit the amount of kernel mem?

 ory consumed by epoll:

 /proc/sys/fs/epoll/max_user_watches (since Linux 2.6.28)

 This specifies a limit on the total number of file descriptors

 that a user can register across all epoll instances on the sys?

 tem. The limit is per real user ID. Each registered file de?

 scriptor costs roughly 90 bytes on a 32-bit kernel, and roughly

 160 bytes on a 64-bit kernel. Currently, the default value for

 max_user_watches is 1/25 (4%) of the available low memory, di?

 vided by the registration cost in bytes.

 Example for suggested usage

 While the usage of epoll when employed as a level-triggered interface

 does have the same semantics as poll(2), the edge-triggered usage re?

 quires more clarification to avoid stalls in the application event

 loop. In this example, listener is a nonblocking socket on which lis?

 ten(2) has been called. The function do_use_fd() uses the new ready

 file descriptor until EAGAIN is returned by either read(2) or write(2).

 An event-driven state machine application should, after having received

 EAGAIN, record its current state so that at the next call to

 do_use_fd() it will continue to read(2) or write(2) from where it

 stopped before.

 #define MAX_EVENTS 10

 struct epoll_event ev, events[MAX_EVENTS];

 int listen_sock, conn_sock, nfds, epollfd;

 /* Code to set up listening socket, 'listen_sock',

 (socket(), bind(), listen()) omitted */

 epollfd = epoll_create1(0);

 if (epollfd == -1) {

 perror("epoll_create1"); Page 4/9

 exit(EXIT_FAILURE);

 }

 ev.events = EPOLLIN;

 ev.data.fd = listen_sock;

 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev) == -1) {

 perror("epoll_ctl: listen_sock");

 exit(EXIT_FAILURE);

 }

 for (;;) {

 nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);

 if (nfds == -1) {

 perror("epoll_wait");

 exit(EXIT_FAILURE);

 }

 for (n = 0; n < nfds; ++n) {

 if (events[n].data.fd == listen_sock) {

 conn_sock = accept(listen_sock,

 (struct sockaddr *) &addr, &addrlen);

 if (conn_sock == -1) {

 perror("accept");

 exit(EXIT_FAILURE);

 }

 setnonblocking(conn_sock);

 ev.events = EPOLLIN | EPOLLET;

 ev.data.fd = conn_sock;

 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, conn_sock,

 &ev) == -1) {

 perror("epoll_ctl: conn_sock");

 exit(EXIT_FAILURE);

 }

 } else {

 do_use_fd(events[n].data.fd);

 } Page 5/9

 }

 }

 When used as an edge-triggered interface, for performance reasons, it

 is possible to add the file descriptor inside the epoll interface

 (EPOLL_CTL_ADD) once by specifying (EPOLLIN|EPOLLOUT). This allows you

 to avoid continuously switching between EPOLLIN and EPOLLOUT calling

 epoll_ctl(2) with EPOLL_CTL_MOD.

 Questions and answers

 0. What is the key used to distinguish the file descriptors registered

 in an interest list?

 The key is the combination of the file descriptor number and the

 open file description (also known as an "open file handle", the

 kernel's internal representation of an open file).

 1. What happens if you register the same file descriptor on an epoll

 instance twice?

 You will probably get EEXIST. However, it is possible to add a du?

 plicate (dup(2), dup2(2), fcntl(2) F_DUPFD) file descriptor to the

 same epoll instance. This can be a useful technique for filtering

 events, if the duplicate file descriptors are registered with dif?

 ferent events masks.

 2. Can two epoll instances wait for the same file descriptor? If so,

 are events reported to both epoll file descriptors?

 Yes, and events would be reported to both. However, careful pro?

 gramming may be needed to do this correctly.

 3. Is the epoll file descriptor itself poll/epoll/selectable?

 Yes. If an epoll file descriptor has events waiting, then it will

 indicate as being readable.

 4. What happens if one attempts to put an epoll file descriptor into

 its own file descriptor set?

 The epoll_ctl(2) call fails (EINVAL). However, you can add an

 epoll file descriptor inside another epoll file descriptor set.

 5. Can I send an epoll file descriptor over a UNIX domain socket to

 another process? Page 6/9

 Yes, but it does not make sense to do this, since the receiving

 process would not have copies of the file descriptors in the inter?

 est list.

 6. Will closing a file descriptor cause it to be removed from all

 epoll interest lists?

 Yes, but be aware of the following point. A file descriptor is a

 reference to an open file description (see open(2)). Whenever a

 file descriptor is duplicated via dup(2), dup2(2), fcntl(2)

 F_DUPFD, or fork(2), a new file descriptor referring to the same

 open file description is created. An open file description contin?

 ues to exist until all file descriptors referring to it have been

 closed.

 A file descriptor is removed from an interest list only after all

 the file descriptors referring to the underlying open file descrip?

 tion have been closed. This means that even after a file descrip?

 tor that is part of an interest list has been closed, events may be

 reported for that file descriptor if other file descriptors refer?

 ring to the same underlying file description remain open. To pre?

 vent this happening, the file descriptor must be explicitly removed

 from the interest list (using epoll_ctl(2) EPOLL_CTL_DEL) before it

 is duplicated. Alternatively, the application must ensure that all

 file descriptors are closed (which may be difficult if file de?

 scriptors were duplicated behind the scenes by library functions

 that used dup(2) or fork(2)).

 7. If more than one event occurs between epoll_wait(2) calls, are they

 combined or reported separately?

 They will be combined.

 8. Does an operation on a file descriptor affect the already collected

 but not yet reported events?

 You can do two operations on an existing file descriptor. Remove

 would be meaningless for this case. Modify will reread available

 I/O.

 9. Do I need to continuously read/write a file descriptor until EAGAIN Page 7/9

 when using the EPOLLET flag (edge-triggered behavior)?

 Receiving an event from epoll_wait(2) should suggest to you that

 such file descriptor is ready for the requested I/O operation. You

 must consider it ready until the next (nonblocking) read/write

 yields EAGAIN. When and how you will use the file descriptor is

 entirely up to you.

 For packet/token-oriented files (e.g., datagram socket, terminal in

 canonical mode), the only way to detect the end of the read/write

 I/O space is to continue to read/write until EAGAIN.

 For stream-oriented files (e.g., pipe, FIFO, stream socket), the

 condition that the read/write I/O space is exhausted can also be

 detected by checking the amount of data read from / written to the

 target file descriptor. For example, if you call read(2) by asking

 to read a certain amount of data and read(2) returns a lower number

 of bytes, you can be sure of having exhausted the read I/O space

 for the file descriptor. The same is true when writing using

 write(2). (Avoid this latter technique if you cannot guarantee

 that the monitored file descriptor always refers to a stream-ori?

 ented file.)

 Possible pitfalls and ways to avoid them

 o Starvation (edge-triggered)

 If there is a large amount of I/O space, it is possible that by trying

 to drain it the other files will not get processed causing starvation.

 (This problem is not specific to epoll.)

 The solution is to maintain a ready list and mark the file descriptor

 as ready in its associated data structure, thereby allowing the appli?

 cation to remember which files need to be processed but still round

 robin amongst all the ready files. This also supports ignoring subse?

 quent events you receive for file descriptors that are already ready.

 o If using an event cache...

 If you use an event cache or store all the file descriptors returned

 from epoll_wait(2), then make sure to provide a way to mark its closure

 dynamically (i.e., caused by a previous event's processing). Suppose Page 8/9

 you receive 100 events from epoll_wait(2), and in event #47 a condition

 causes event #13 to be closed. If you remove the structure and

 close(2) the file descriptor for event #13, then your event cache might

 still say there are events waiting for that file descriptor causing

 confusion.

 One solution for this is to call, during the processing of event 47,

 epoll_ctl(EPOLL_CTL_DEL) to delete file descriptor 13 and close(2),

 then mark its associated data structure as removed and link it to a

 cleanup list. If you find another event for file descriptor 13 in your

 batch processing, you will discover the file descriptor had been previ?

 ously removed and there will be no confusion.

VERSIONS

 The epoll API was introduced in Linux kernel 2.5.44. Support was added

 to glibc in version 2.3.2.

CONFORMING TO

 The epoll API is Linux-specific. Some other systems provide similar

 mechanisms, for example, FreeBSD has kqueue, and Solaris has /dev/poll.

NOTES

 The set of file descriptors that is being monitored via an epoll file

 descriptor can be viewed via the entry for the epoll file descriptor in

 the process's /proc/[pid]/fdinfo directory. See proc(5) for further

 details.

 The kcmp(2) KCMP_EPOLL_TFD operation can be used to test whether a file

 descriptor is present in an epoll instance.

SEE ALSO

 epoll_create(2), epoll_create1(2), epoll_ctl(2), epoll_wait(2),

 poll(2), select(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 EPOLL(7) Page 9/9

