
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dmidecode.8' command

$ man dmidecode.8

DMIDECODE(8) System Manager's Manual DMIDECODE(8)

NAME

 dmidecode - DMI table decoder

SYNOPSIS

 dmidecode [OPTIONS]

DESCRIPTION

 dmidecode is a tool for dumping a computer's DMI (some say SMBIOS) ta?

 ble contents in a human-readable format. This table contains a descrip?

 tion of the system's hardware components, as well as other useful

 pieces of information such as serial numbers and BIOS revision. Thanks

 to this table, you can retrieve this information without having to

 probe for the actual hardware. While this is a good point in terms of

 report speed and safeness, this also makes the presented information

 possibly unreliable.

 The DMI table doesn't only describe what the system is currently made

 of, it also can report the possible evolutions (such as the fastest

 supported CPU or the maximal amount of memory supported).

 SMBIOS stands for System Management BIOS, while DMI stands for Desktop

 Management Interface. Both standards are tightly related and developed

 by the DMTF (Desktop Management Task Force).

 As you run it, dmidecode will try to locate the DMI table. It will

 first try to read the DMI table from sysfs, and next try reading di?

 rectly from memory if sysfs access failed. If dmidecode succeeds in Page 1/7

 locating a valid DMI table, it will then parse this table and display a

 list of records like this one:

 Handle 0x0002, DMI type 2, 8 bytes. Base Board Information

 Manufacturer: Intel

 Product Name: C440GX+

 Version: 727281-001

 Serial Number: INCY92700942

 Each record has:

 ? A handle. This is a unique identifier, which allows records to refer?

 ence each other. For example, processor records usually reference

 cache memory records using their handles.

 ? A type. The SMBIOS specification defines different types of elements

 a computer can be made of. In this example, the type is 2, which

 means that the record contains "Base Board Information".

 ? A size. Each record has a 4-byte header (2 for the handle, 1 for the

 type, 1 for the size), the rest is used by the record data. This

 value doesn't take text strings into account (these are placed at the

 end of the record), so the actual length of the record may be (and is

 often) greater than the displayed value.

 ? Decoded values. The information presented of course depends on the

 type of record. Here, we learn about the board's manufacturer, model,

 version and serial number.

OPTIONS

 -d, --dev-mem FILE

 Read memory from device FILE (default: /dev/mem)

 -q, --quiet

 Be less verbose. Unknown, inactive and OEM-specific entries are

 not displayed. Meta-data and handle references are hidden.

 -s, --string KEYWORD

 Only display the value of the DMI string identified by KEYWORD.

 KEYWORD must be a keyword from the following list: bios-vendor,

 bios-version, bios-release-date, bios-revision, firmware-revi?

 sion, system-manufacturer, system-product-name, system-version, Page 2/7

 system-serial-number, system-uuid, system-sku-number, system-

 family, baseboard-manufacturer, baseboard-product-name, base?

 board-version, baseboard-serial-number, baseboard-asset-tag,

 chassis-manufacturer, chassis-type, chassis-version, chassis-se?

 rial-number, chassis-asset-tag, processor-family, processor-man?

 ufacturer, processor-version, processor-frequency. Each keyword

 corresponds to a given DMI type and a given offset within this

 entry type. Not all strings may be meaningful or even defined

 on all systems. Some keywords may return more than one result on

 some systems (e.g. processor-version on a multi-processor sys?

 tem). If KEYWORD is not provided or not valid, a list of all

 valid keywords is printed and dmidecode exits with an error.

 This option cannot be used more than once.

 Note: on Linux, most of these strings can alternatively be read

 directly from sysfs, typically from files under /sys/de?

 vices/virtual/dmi/id. Most of these files are even readable by

 regular users.

 -t, --type TYPE

 Only display the entries of type TYPE. TYPE can be either a DMI

 type number, or a comma-separated list of type numbers, or a

 keyword from the following list: bios, system, baseboard, chas?

 sis, processor, memory, cache, connector, slot. Refer to the DMI

 TYPES section below for details. If this option is used more

 than once, the set of displayed entries will be the union of all

 the given types. If TYPE is not provided or not valid, a list

 of all valid keywords is printed and dmidecode exits with an er?

 ror.

 -H, --handle HANDLE

 Only display the entry whose handle matches HANDLE. HANDLE is a

 16-bit integer.

 -u, --dump

 Do not decode the entries, dump their contents as hexadecimal

 instead. Note that this is still a text output, no binary data Page 3/7

 will be thrown upon you. The strings attached to each entry are

 displayed as both hexadecimal and ASCII. This option is mainly

 useful for debugging.

 --dump-bin FILE

 Do not decode the entries, instead dump the DMI data to a file

 in binary form. The generated file is suitable to pass to

 --from-dump later.

 --from-dump FILE

 Read the DMI data from a binary file previously generated using

 --dump-bin.

 --no-sysfs

 Do not attempt to read DMI data from sysfs files. This is mainly

 useful for debugging.

 --oem-string N

 Only display the value of the OEM string number N. The first OEM

 string has number 1. With special value "count", return the num?

 ber of OEM strings instead.

 -h, --help

 Display usage information and exit

 -V, --version

 Display the version and exit

 Options --string, --type, --dump-bin and --oem-string determine the

 output format and are mutually exclusive.

 Please note in case of dmidecode is run on a system with BIOS that

 boasts new SMBIOS specification, which is not supported by the tool

 yet, it will print out relevant message in addition to requested data

 on the very top of the output. Thus informs the output data is not re?

 liable.

DMI TYPES

 The SMBIOS specification defines the following DMI types:

 Type Information

 ??

 0 BIOS Page 4/7

 1 System

 2 Baseboard

 3 Chassis

 4 Processor

 5 Memory Controller

 6 Memory Module

 7 Cache

 8 Port Connector

 9 System Slots

 10 On Board Devices

 11 OEM Strings

 12 System Configuration Options

 13 BIOS Language

 14 Group Associations

 15 System Event Log

 16 Physical Memory Array

 17 Memory Device

 18 32-bit Memory Error

 19 Memory Array Mapped Address

 20 Memory Device Mapped Address

 21 Built-in Pointing Device

 22 Portable Battery

 23 System Reset

 24 Hardware Security

 25 System Power Controls

 26 Voltage Probe

 27 Cooling Device

 28 Temperature Probe

 29 Electrical Current Probe

 30 Out-of-band Remote Access

 31 Boot Integrity Services

 32 System Boot

 33 64-bit Memory Error Page 5/7

 34 Management Device

 35 Management Device Component

 36 Management Device Threshold Data

 37 Memory Channel

 38 IPMI Device

 39 Power Supply

 40 Additional Information

 41 Onboard Devices Extended Information

 42 Management Controller Host Interface

 Additionally, type 126 is used for disabled entries and type 127 is an

 end-of-table marker. Types 128 to 255 are for OEM-specific data.

 dmidecode will display these entries by default, but it can only decode

 them when the vendors have contributed documentation or code for them.

 Keywords can be used instead of type numbers with --type. Each keyword

 is equivalent to a list of type numbers:

 Keyword Types

 ??????????????????????????????

 bios 0, 13

 system 1, 12, 15, 23, 32

 baseboard 2, 10, 41

 chassis 3

 processor 4

 memory 5, 6, 16, 17

 cache 7

 connector 8

 slot 9

 Keywords are matched case-insensitively. The following command lines

 are equivalent:

 ? dmidecode --type 0 --type 13

 ? dmidecode --type 0,13

 ? dmidecode --type bios

 ? dmidecode --type BIOS

BINARY DUMP FILE FORMAT Page 6/7

 The binary dump files generated by --dump-bin and read using --from-

 dump are formatted as follows:

 ? The SMBIOS or DMI entry point is located at offset 0x00. It is

 crafted to hard-code the table address at offset 0x20.

 ? The DMI table is located at offset 0x20.

UUID FORMAT

 There is some ambiguity about how to interpret the UUID fields prior to

 SMBIOS specification version 2.6. There was no mention of byte swap?

 ping, and RFC 4122 says that no byte swapping should be applied by de?

 fault. However, SMBIOS specification version 2.6 (and later) explicitly

 states that the first 3 fields of the UUID should be read as little-en?

 dian numbers (byte-swapped). Furthermore, it implies that the same was

 already true for older versions of the specification, even though it

 was not mentioned. In practice, many hardware vendors were not byte-

 swapping the UUID. So, in order to preserve compatibility, it was de?

 cided to interpret the UUID fields according to RFC 4122 (no byte swap?

 ping) when the SMBIOS version is older than 2.6, and to interpret the

 first 3 fields as little-endian (byte-swapped) when the SMBIOS version

 is 2.6 or later. The Linux kernel follows the same logic.

FILES

 /dev/mem

 /sys/firmware/dmi/tables/smbios_entry_point (Linux only)

 /sys/firmware/dmi/tables/DMI (Linux only)

BUGS

 More often than not, information contained in the DMI tables is inaccu?

 rate, incomplete or simply wrong.

AUTHORS

 Alan Cox, Jean Delvare

SEE ALSO

 biosdecode(8), mem(4), ownership(8), vpddecode(8)

dmidecode January 2019 DMIDECODE(8)

Page 7/7

