
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dlopen.3' command

$ man dlopen.3

DLOPEN(3) Linux Programmer's Manual DLOPEN(3)

NAME

 dlclose, dlopen, dlmopen - open and close a shared object

SYNOPSIS

 #include <dlfcn.h>

 void *dlopen(const char *filename, int flags);

 int dlclose(void *handle);

 #define _GNU_SOURCE

 #include <dlfcn.h>

 void *dlmopen(Lmid_t lmid, const char *filename, int flags);

 Link with -ldl.

DESCRIPTION

 dlopen()

 The function dlopen() loads the dynamic shared object (shared library)

 file named by the null-terminated string filename and returns an opaque

 "handle" for the loaded object. This handle is employed with other

 functions in the dlopen API, such as dlsym(3), dladdr(3), dlinfo(3),

 and dlclose().

 If filename is NULL, then the returned handle is for the main program.

 If filename contains a slash ("/"), then it is interpreted as a (rela?

 tive or absolute) pathname. Otherwise, the dynamic linker searches for

 the object as follows (see ld.so(8) for further details):

 o (ELF only) If the calling object (i.e., the shared library or exe? Page 1/10

 cutable from which dlopen() is called) contains a DT_RPATH tag, and

 does not contain a DT_RUNPATH tag, then the directories listed in

 the DT_RPATH tag are searched.

 o If, at the time that the program was started, the environment vari?

 able LD_LIBRARY_PATH was defined to contain a colon-separated list

 of directories, then these are searched. (As a security measure,

 this variable is ignored for set-user-ID and set-group-ID pro?

 grams.)

 o (ELF only) If the calling object contains a DT_RUNPATH tag, then

 the directories listed in that tag are searched.

 o The cache file /etc/ld.so.cache (maintained by ldconfig(8)) is

 checked to see whether it contains an entry for filename.

 o The directories /lib and /usr/lib are searched (in that order).

 If the object specified by filename has dependencies on other shared

 objects, then these are also automatically loaded by the dynamic linker

 using the same rules. (This process may occur recursively, if those

 objects in turn have dependencies, and so on.)

 One of the following two values must be included in flags:

 RTLD_LAZY

 Perform lazy binding. Resolve symbols only as the code that

 references them is executed. If the symbol is never referenced,

 then it is never resolved. (Lazy binding is performed only for

 function references; references to variables are always immedi?

 ately bound when the shared object is loaded.) Since glibc

 2.1.1, this flag is overridden by the effect of the LD_BIND_NOW

 environment variable.

 RTLD_NOW

 If this value is specified, or the environment variable

 LD_BIND_NOW is set to a nonempty string, all undefined symbols

 in the shared object are resolved before dlopen() returns. If

 this cannot be done, an error is returned.

 Zero or more of the following values may also be ORed in flags:

 RTLD_GLOBAL Page 2/10

 The symbols defined by this shared object will be made available

 for symbol resolution of subsequently loaded shared objects.

 RTLD_LOCAL

 This is the converse of RTLD_GLOBAL, and the default if neither

 flag is specified. Symbols defined in this shared object are

 not made available to resolve references in subsequently loaded

 shared objects.

 RTLD_NODELETE (since glibc 2.2)

 Do not unload the shared object during dlclose(). Consequently,

 the object's static and global variables are not reinitialized

 if the object is reloaded with dlopen() at a later time.

 RTLD_NOLOAD (since glibc 2.2)

 Don't load the shared object. This can be used to test if the

 object is already resident (dlopen() returns NULL if it is not,

 or the object's handle if it is resident). This flag can also

 be used to promote the flags on a shared object that is already

 loaded. For example, a shared object that was previously loaded

 with RTLD_LOCAL can be reopened with RTLD_NOLOAD | RTLD_GLOBAL.

 RTLD_DEEPBIND (since glibc 2.3.4)

 Place the lookup scope of the symbols in this shared object

 ahead of the global scope. This means that a self-contained ob?

 ject will use its own symbols in preference to global symbols

 with the same name contained in objects that have already been

 loaded.

 If filename is NULL, then the returned handle is for the main program.

 When given to dlsym(3), this handle causes a search for a symbol in the

 main program, followed by all shared objects loaded at program startup,

 and then all shared objects loaded by dlopen() with the flag

 RTLD_GLOBAL.

 Symbol references in the shared object are resolved using (in order):

 symbols in the link map of objects loaded for the main program and its

 dependencies; symbols in shared objects (and their dependencies) that

 were previously opened with dlopen() using the RTLD_GLOBAL flag; and Page 3/10

 definitions in the shared object itself (and any dependencies that were

 loaded for that object).

 Any global symbols in the executable that were placed into its dynamic

 symbol table by ld(1) can also be used to resolve references in a dy?

 namically loaded shared object. Symbols may be placed in the dynamic

 symbol table either because the executable was linked with the flag

 "-rdynamic" (or, synonymously, "--export-dynamic"), which causes all of

 the executable's global symbols to be placed in the dynamic symbol ta?

 ble, or because ld(1) noted a dependency on a symbol in another object

 during static linking.

 If the same shared object is opened again with dlopen(), the same ob?

 ject handle is returned. The dynamic linker maintains reference counts

 for object handles, so a dynamically loaded shared object is not de?

 allocated until dlclose() has been called on it as many times as

 dlopen() has succeeded on it. Constructors (see below) are called only

 when the object is actually loaded into memory (i.e., when the refer?

 ence count increases to 1).

 A subsequent dlopen() call that loads the same shared object with

 RTLD_NOW may force symbol resolution for a shared object earlier loaded

 with RTLD_LAZY. Similarly, an object that was previously opened with

 RTLD_LOCAL can be promoted to RTLD_GLOBAL in a subsequent dlopen().

 If dlopen() fails for any reason, it returns NULL.

 dlmopen()

 This function performs the same task as dlopen()?the filename and flags

 arguments, as well as the return value, are the same, except for the

 differences noted below.

 The dlmopen() function differs from dlopen() primarily in that it ac?

 cepts an additional argument, lmid, that specifies the link-map list

 (also referred to as a namespace) in which the shared object should be

 loaded. (By comparison, dlopen() adds the dynamically loaded shared

 object to the same namespace as the shared object from which the

 dlopen() call is made.) The Lmid_t type is an opaque handle that

 refers to a namespace. Page 4/10

 The lmid argument is either the ID of an existing namespace (which can

 be obtained using the dlinfo(3) RTLD_DI_LMID request) or one of the

 following special values:

 LM_ID_BASE

 Load the shared object in the initial namespace (i.e., the ap?

 plication's namespace).

 LM_ID_NEWLM

 Create a new namespace and load the shared object in that name?

 space. The object must have been correctly linked to reference

 all of the other shared objects that it requires, since the new

 namespace is initially empty.

 If filename is NULL, then the only permitted value for lmid is

 LM_ID_BASE.

 dlclose()

 The function dlclose() decrements the reference count on the dynami?

 cally loaded shared object referred to by handle.

 If the object's reference count drops to zero and no symbols in this

 object are required by other objects, then the object is unloaded after

 first calling any destructors defined for the object. (Symbols in this

 object might be required in another object because this object was

 opened with the RTLD_GLOBAL flag and one of its symbols satisfied a re?

 location in another object.)

 All shared objects that were automatically loaded when dlopen() was in?

 voked on the object referred to by handle are recursively closed in the

 same manner.

 A successful return from dlclose() does not guarantee that the symbols

 associated with handle are removed from the caller's address space. In

 addition to references resulting from explicit dlopen() calls, a shared

 object may have been implicitly loaded (and reference counted) because

 of dependencies in other shared objects. Only when all references have

 been released can the shared object be removed from the address space.

RETURN VALUE

 On success, dlopen() and dlmopen() return a non-NULL handle for the Page 5/10

 loaded object. On error (file could not be found, was not readable,

 had the wrong format, or caused errors during loading), these functions

 return NULL.

 On success, dlclose() returns 0; on error, it returns a nonzero value.

 Errors from these functions can be diagnosed using dlerror(3).

VERSIONS

 dlopen() and dlclose() are present in glibc 2.0 and later. dlmopen()

 first appeared in glibc 2.3.4.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?dlopen(), dlmopen(), dlclose() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 POSIX.1-2001 describes dlclose() and dlopen(). The dlmopen() function

 is a GNU extension.

 The RTLD_NOLOAD, RTLD_NODELETE, and RTLD_DEEPBIND flags are GNU exten?

 sions; the first two of these flags are also present on Solaris.

NOTES

 dlmopen() and namespaces

 A link-map list defines an isolated namespace for the resolution of

 symbols by the dynamic linker. Within a namespace, dependent shared

 objects are implicitly loaded according to the usual rules, and symbol

 references are likewise resolved according to the usual rules, but such

 resolution is confined to the definitions provided by the objects that

 have been (explicitly and implicitly) loaded into the namespace.

 The dlmopen() function permits object-load isolation?the ability to

 load a shared object in a new namespace without exposing the rest of

 the application to the symbols made available by the new object. Note

 that the use of the RTLD_LOCAL flag is not sufficient for this purpose, Page 6/10

 since it prevents a shared object's symbols from being available to any

 other shared object. In some cases, we may want to make the symbols

 provided by a dynamically loaded shared object available to (a subset

 of) other shared objects without exposing those symbols to the entire

 application. This can be achieved by using a separate namespace and

 the RTLD_GLOBAL flag.

 The dlmopen() function also can be used to provide better isolation

 than the RTLD_LOCAL flag. In particular, shared objects loaded with

 RTLD_LOCAL may be promoted to RTLD_GLOBAL if they are dependencies of

 another shared object loaded with RTLD_GLOBAL. Thus, RTLD_LOCAL is in?

 sufficient to isolate a loaded shared object except in the (uncommon)

 case where one has explicit control over all shared object dependen?

 cies.

 Possible uses of dlmopen() are plugins where the author of the plugin-

 loading framework can't trust the plugin authors and does not wish any

 undefined symbols from the plugin framework to be resolved to plugin

 symbols. Another use is to load the same object more than once. With?

 out the use of dlmopen(), this would require the creation of distinct

 copies of the shared object file. Using dlmopen(), this can be

 achieved by loading the same shared object file into different name?

 spaces.

 The glibc implementation supports a maximum of 16 namespaces.

 Initialization and finalization functions

 Shared objects may export functions using the __attribute__((construc?

 tor)) and __attribute__((destructor)) function attributes. Constructor

 functions are executed before dlopen() returns, and destructor func?

 tions are executed before dlclose() returns. A shared object may ex?

 port multiple constructors and destructors, and priorities can be asso?

 ciated with each function to determine the order in which they are exe?

 cuted. See the gcc info pages (under "Function attributes") for fur?

 ther information.

 An older method of (partially) achieving the same result is via the use

 of two special symbols recognized by the linker: _init and _fini. If a Page 7/10

 dynamically loaded shared object exports a routine named _init(), then

 that code is executed after loading a shared object, before dlopen()

 returns. If the shared object exports a routine named _fini(), then

 that routine is called just before the object is unloaded. In this

 case, one must avoid linking against the system startup files, which

 contain default versions of these files; this can be done by using the

 gcc(1) -nostartfiles command-line option.

 Use of _init and _fini is now deprecated in favor of the aforementioned

 constructors and destructors, which among other advantages, permit mul?

 tiple initialization and finalization functions to be defined.

 Since glibc 2.2.3, atexit(3) can be used to register an exit handler

 that is automatically called when a shared object is unloaded.

 History

 These functions are part of the dlopen API, derived from SunOS.

BUGS

 As at glibc 2.24, specifying the RTLD_GLOBAL flag when calling dl?

 mopen() generates an error. Furthermore, specifying RTLD_GLOBAL when

 calling dlopen() results in a program crash (SIGSEGV) if the call is

 made from any object loaded in a namespace other than the initial name?

 space.

EXAMPLES

 The program below loads the (glibc) math library, looks up the address

 of the cos(3) function, and prints the cosine of 2.0. The following is

 an example of building and running the program:

 $ cc dlopen_demo.c -ldl

 $./a.out

 -0.416147

 Program source

 #include <stdio.h>

 #include <stdlib.h>

 #include <dlfcn.h>

 #include <gnu/lib-names.h> /* Defines LIBM_SO (which will be a

 string such as "libm.so.6") */ Page 8/10

 int

 main(void)

 {

 void *handle;

 double (*cosine)(double);

 char *error;

 handle = dlopen(LIBM_SO, RTLD_LAZY);

 if (!handle) {

 fprintf(stderr, "%s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 dlerror(); /* Clear any existing error */

 cosine = (double (*)(double)) dlsym(handle, "cos");

 /* According to the ISO C standard, casting between function

 pointers and 'void *', as done above, produces undefined results.

 POSIX.1-2001 and POSIX.1-2008 accepted this state of affairs and

 proposed the following workaround:

 *(void **) (&cosine) = dlsym(handle, "cos");

 This (clumsy) cast conforms with the ISO C standard and will

 avoid any compiler warnings.

 The 2013 Technical Corrigendum 1 to POSIX.1-2008 improved matters

 by requiring that conforming implementations support casting

 'void *' to a function pointer. Nevertheless, some compilers

 (e.g., gcc with the '-pedantic' option) may complain about the

 cast used in this program. */

 error = dlerror();

 if (error != NULL) {

 fprintf(stderr, "%s\n", error);

 exit(EXIT_FAILURE);

 }

 printf("%f\n", (*cosine)(2.0));

 dlclose(handle);

 exit(EXIT_SUCCESS); Page 9/10

 }

SEE ALSO

 ld(1), ldd(1), pldd(1), dl_iterate_phdr(3), dladdr(3), dlerror(3),

 dlinfo(3), dlsym(3), rtld-audit(7), ld.so(8), ldconfig(8)

 gcc info pages, ld info pages

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 DLOPEN(3)

Page 10/10

