
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dladdr.3' command

$ man dladdr.3

DLADDR(3) Linux Programmer's Manual DLADDR(3)

NAME

 dladdr, dladdr1 - translate address to symbolic information

SYNOPSIS

 #define _GNU_SOURCE

 #include <dlfcn.h>

 int dladdr(void *addr, Dl_info *info);

 int dladdr1(void *addr, Dl_info *info, void **extra_info, int flags);

 Link with -ldl.

DESCRIPTION

 The function dladdr() determines whether the address specified in addr

 is located in one of the shared objects loaded by the calling applica?

 tion. If it is, then dladdr() returns information about the shared ob?

 ject and symbol that overlaps addr. This information is returned in a

 Dl_info structure:

 typedef struct {

 const char *dli_fname; /* Pathname of shared object that

 contains address */

 void *dli_fbase; /* Base address at which shared

 object is loaded */

 const char *dli_sname; /* Name of symbol whose definition

 overlaps addr */

 void *dli_saddr; /* Exact address of symbol named Page 1/5

 in dli_sname */

 } Dl_info;

 If no symbol matching addr could be found, then dli_sname and dli_saddr

 are set to NULL.

 The function dladdr1() is like dladdr(), but returns additional infor?

 mation via the argument extra_info. The information returned depends

 on the value specified in flags, which can have one of the following

 values:

 RTLD_DL_LINKMAP

 Obtain a pointer to the link map for the matched file. The ex?

 tra_info argument points to a pointer to a link_map structure

 (i.e., struct link_map **), defined in <link.h> as:

 struct link_map {

 ElfW(Addr) l_addr; /* Difference between the

 address in the ELF file and

 the address in memory */

 char *l_name; /* Absolute pathname where

 object was found */

 ElfW(Dyn) *l_ld; /* Dynamic section of the

 shared object */

 struct link_map *l_next, *l_prev;

 /* Chain of loaded objects */

 /* Plus additional fields private to the

 implementation */

 };

 RTLD_DL_SYMENT

 Obtain a pointer to the ELF symbol table entry of the matching

 symbol. The extra_info argument is a pointer to a symbol

 pointer: const ElfW(Sym) **. The ElfW() macro definition turns

 its argument into the name of an ELF data type suitable for the

 hardware architecture. For example, on a 64-bit platform,

 ElfW(Sym) yields the data type name Elf64_Sym, which is defined

 in <elf.h> as: Page 2/5

 typedef struct {

 Elf64_Word st_name; /* Symbol name */

 unsigned char st_info; /* Symbol type and binding */

 unsigned char st_other; /* Symbol visibility */

 Elf64_Section st_shndx; /* Section index */

 Elf64_Addr st_value; /* Symbol value */

 Elf64_Xword st_size; /* Symbol size */

 } Elf64_Sym;

 The st_name field is an index into the string table.

 The st_info field encodes the symbol's type and binding. The

 type can be extracted using the macro ELF64_ST_TYPE(st_info) (or

 ELF32_ST_TYPE() on 32-bit platforms), which yields one of the

 following values:

 Value Description

 STT_NOTYPE Symbol type is unspecified

 STT_OBJECT Symbol is a data object

 STT_FUNC Symbol is a code object

 STT_SECTION Symbol associated with a section

 STT_FILE Symbol's name is filename

 STT_COMMON Symbol is a common data object

 STT_TLS Symbol is thread-local data object

 STT_GNU_IFUNC Symbol is indirect code object

 The symbol binding can be extracted from the st_info field using

 the macro ELF64_ST_BIND(st_info) (or ELF32_ST_BIND() on 32-bit

 platforms), which yields one of the following values:

 Value Description

 STB_LOCAL Local symbol

 STB_GLOBAL Global symbol

 STB_WEAK Weak symbol

 STB_GNU_UNIQUE Unique symbol

 The st_other field contains the symbol's visibility, which can

 be extracted using the macro ELF64_ST_VISIBILITY(st_info) (or

 ELF32_ST_VISIBILITY() on 32-bit platforms), which yields one of Page 3/5

 the following values:

 Value Description

 STV_DEFAULT Default symbol visibility rules

 STV_INTERNAL Processor-specific hidden class

 STV_HIDDEN Symbol unavailable in other modules

 STV_PROTECTED Not preemptible, not exported

RETURN VALUE

 On success, these functions return a nonzero value. If the address

 specified in addr could be matched to a shared object, but not to a

 symbol in the shared object, then the info->dli_sname and

 info->dli_saddr fields are set to NULL.

 If the address specified in addr could not be matched to a shared ob?

 ject, then these functions return 0. In this case, an error message is

 not available via dlerror(3).

VERSIONS

 dladdr() is present in glibc 2.0 and later. dladdr1() first appeared

 in glibc 2.3.3.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?dladdr(), dladdr1() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 These functions are nonstandard GNU extensions that are also present on

 Solaris.

BUGS

 Sometimes, the function pointers you pass to dladdr() may surprise you.

 On some architectures (notably i386 and x86-64), dli_fname and

 dli_fbase may end up pointing back at the object from which you called

 dladdr(), even if the function used as an argument should come from a Page 4/5

 dynamically linked library.

 The problem is that the function pointer will still be resolved at com?

 pile time, but merely point to the plt (Procedure Linkage Table) sec?

 tion of the original object (which dispatches the call after asking the

 dynamic linker to resolve the symbol). To work around this, you can

 try to compile the code to be position-independent: then, the compiler

 cannot prepare the pointer at compile time any more and gcc(1) will

 generate code that just loads the final symbol address from the got

 (Global Offset Table) at run time before passing it to dladdr().

SEE ALSO

 dl_iterate_phdr(3), dlinfo(3), dlopen(3), dlsym(3), ld.so(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 DLADDR(3)

Page 5/5

