
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dl_iterate_phdr.3' command

$ man dl_iterate_phdr.3

DL_ITERATE_PHDR(3) Linux Programmer's Manual DL_ITERATE_PHDR(3)

NAME

 dl_iterate_phdr - walk through list of shared objects

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <link.h>

 int dl_iterate_phdr(

 int (*callback) (struct dl_phdr_info *info,

 size_t size, void *data),

 void *data);

DESCRIPTION

 The dl_iterate_phdr() function allows an application to inquire at run

 time to find out which shared objects it has loaded, and the order in

 which they were loaded.

 The dl_iterate_phdr() function walks through the list of an applica?

 tion's shared objects and calls the function callback once for each ob?

 ject, until either all shared objects have been processed or callback

 returns a nonzero value.

 Each call to callback receives three arguments: info, which is a

 pointer to a structure containing information about the shared object;

 size, which is the size of the structure pointed to by info; and data,

 which is a copy of whatever value was passed by the calling program as

 the second argument (also named data) in the call to dl_iterate_phdr(). Page 1/7

 The info argument is a structure of the following type:

 struct dl_phdr_info {

 ElfW(Addr) dlpi_addr; /* Base address of object */

 const char *dlpi_name; /* (Null-terminated) name of

 object */

 const ElfW(Phdr) *dlpi_phdr; /* Pointer to array of

 ELF program headers

 for this object */

 ElfW(Half) dlpi_phnum; /* # of items in dlpi_phdr */

 /* The following fields were added in glibc 2.4, after the first

 version of this structure was available. Check the size

 argument passed to the dl_iterate_phdr callback to determine

 whether or not each later member is available. */

 unsigned long long dlpi_adds;

 /* Incremented when a new object may

 have been added */

 unsigned long long dlpi_subs;

 /* Incremented when an object may

 have been removed */

 size_t dlpi_tls_modid;

 /* If there is a PT_TLS segment, its module

 ID as used in TLS relocations, else zero */

 void *dlpi_tls_data;

 /* The address of the calling thread's instance

 of this module's PT_TLS segment, if it has

 one and it has been allocated in the calling

 thread, otherwise a null pointer */

 };

 (The ElfW() macro definition turns its argument into the name of an ELF

 data type suitable for the hardware architecture. For example, on a

 32-bit platform, ElfW(Addr) yields the data type name Elf32_Addr. Fur?

 ther information on these types can be found in the <elf.h> and

 <link.h> header files.) Page 2/7

 The dlpi_addr field indicates the base address of the shared object

 (i.e., the difference between the virtual memory address of the shared

 object and the offset of that object in the file from which it was

 loaded). The dlpi_name field is a null-terminated string giving the

 pathname from which the shared object was loaded.

 To understand the meaning of the dlpi_phdr and dlpi_phnum fields, we

 need to be aware that an ELF shared object consists of a number of seg?

 ments, each of which has a corresponding program header describing the

 segment. The dlpi_phdr field is a pointer to an array of the program

 headers for this shared object. The dlpi_phnum field indicates the

 size of this array.

 These program headers are structures of the following form:

 typedef struct {

 Elf32_Word p_type; /* Segment type */

 Elf32_Off p_offset; /* Segment file offset */

 Elf32_Addr p_vaddr; /* Segment virtual address */

 Elf32_Addr p_paddr; /* Segment physical address */

 Elf32_Word p_filesz; /* Segment size in file */

 Elf32_Word p_memsz; /* Segment size in memory */

 Elf32_Word p_flags; /* Segment flags */

 Elf32_Word p_align; /* Segment alignment */

 } Elf32_Phdr;

 Note that we can calculate the location of a particular program header,

 x, in virtual memory using the formula:

 addr == info->dlpi_addr + info->dlpi_phdr[x].p_vaddr;

 Possible values for p_type include the following (see <elf.h> for fur?

 ther details):

 #define PT_LOAD 1 /* Loadable program segment */

 #define PT_DYNAMIC 2 /* Dynamic linking information */

 #define PT_INTERP 3 /* Program interpreter */

 #define PT_NOTE 4 /* Auxiliary information */

 #define PT_SHLIB 5 /* Reserved */

 #define PT_PHDR 6 /* Entry for header table itself */ Page 3/7

 #define PT_TLS 7 /* Thread-local storage segment */

 #define PT_GNU_EH_FRAME 0x6474e550 /* GCC .eh_frame_hdr segment */

 #define PT_GNU_STACK 0x6474e551 /* Indicates stack executability */

 #define PT_GNU_RELRO 0x6474e552 /* Read-only after relocation */

RETURN VALUE

 The dl_iterate_phdr() function returns whatever value was returned by

 the last call to callback.

VERSIONS

 dl_iterate_phdr() has been supported in glibc since version 2.2.4.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?dl_iterate_phdr() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 The dl_iterate_phdr() function is not specified in any standard. Vari?

 ous other systems provide a version of this function, although details

 of the returned dl_phdr_info structure differ. On the BSDs and So?

 laris, the structure includes the fields dlpi_addr, dlpi_name,

 dlpi_phdr, and dlpi_phnum in addition to other implementation-specific

 fields.

NOTES

 Future versions of the C library may add further fields to the

 dl_phdr_info structure; in that event, the size argument provides a

 mechanism for the callback function to discover whether it is running

 on a system with added fields.

 The first object visited by callback is the main program. For the main

 program, the dlpi_name field will be an empty string.

EXAMPLES

 The following program displays a list of pathnames of the shared ob? Page 4/7

 jects it has loaded. For each shared object, the program lists some

 information (virtual address, size, flags, and type) for each of the

 objects ELF segments.

 The following shell session demonstrates the output produced by the

 program on an x86-64 system. The first shared object for which output

 is displayed (where the name is an empty string) is the main program.

 $./a.out

 Name: "" (9 segments)

 0: [0x400040; memsz: 1f8] flags: 0x5; PT_PHDR

 1: [0x400238; memsz: 1c] flags: 0x4; PT_INTERP

 2: [0x400000; memsz: ac4] flags: 0x5; PT_LOAD

 3: [0x600e10; memsz: 240] flags: 0x6; PT_LOAD

 4: [0x600e28; memsz: 1d0] flags: 0x6; PT_DYNAMIC

 5: [0x400254; memsz: 44] flags: 0x4; PT_NOTE

 6: [0x400970; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME

 7: [(nil); memsz: 0] flags: 0x6; PT_GNU_STACK

 8: [0x600e10; memsz: 1f0] flags: 0x4; PT_GNU_RELRO

 Name: "linux-vdso.so.1" (4 segments)

 0: [0x7ffc6edd1000; memsz: e89] flags: 0x5; PT_LOAD

 1: [0x7ffc6edd1360; memsz: 110] flags: 0x4; PT_DYNAMIC

 2: [0x7ffc6edd17b0; memsz: 3c] flags: 0x4; PT_NOTE

 3: [0x7ffc6edd17ec; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME

 Name: "/lib64/libc.so.6" (10 segments)

 0: [0x7f55712ce040; memsz: 230] flags: 0x5; PT_PHDR

 1: [0x7f557145b980; memsz: 1c] flags: 0x4; PT_INTERP

 2: [0x7f55712ce000; memsz: 1b6a5c] flags: 0x5; PT_LOAD

 3: [0x7f55716857a0; memsz: 9240] flags: 0x6; PT_LOAD

 4: [0x7f5571688b80; memsz: 1f0] flags: 0x6; PT_DYNAMIC

 5: [0x7f55712ce270; memsz: 44] flags: 0x4; PT_NOTE

 6: [0x7f55716857a0; memsz: 78] flags: 0x4; PT_TLS

 7: [0x7f557145b99c; memsz: 544c] flags: 0x4; PT_GNU_EH_FRAME

 8: [0x7f55712ce000; memsz: 0] flags: 0x6; PT_GNU_STACK

 9: [0x7f55716857a0; memsz: 3860] flags: 0x4; PT_GNU_RELRO Page 5/7

 Name: "/lib64/ld-linux-x86-64.so.2" (7 segments)

 0: [0x7f557168f000; memsz: 20828] flags: 0x5; PT_LOAD

 1: [0x7f55718afba0; memsz: 15a8] flags: 0x6; PT_LOAD

 2: [0x7f55718afe10; memsz: 190] flags: 0x6; PT_DYNAMIC

 3: [0x7f557168f1c8; memsz: 24] flags: 0x4; PT_NOTE

 4: [0x7f55716acec4; memsz: 604] flags: 0x4; PT_GNU_EH_FRAME

 5: [0x7f557168f000; memsz: 0] flags: 0x6; PT_GNU_STACK

 6: [0x7f55718afba0; memsz: 460] flags: 0x4; PT_GNU_RELRO

 Program source

 #define _GNU_SOURCE

 #include <link.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <stdint.h>

 static int

 callback(struct dl_phdr_info *info, size_t size, void *data)

 {

 char *type;

 int p_type;

 printf("Name: \"%s\" (%d segments)\n", info->dlpi_name,

 info->dlpi_phnum);

 for (int j = 0; j < info->dlpi_phnum; j++) {

 p_type = info->dlpi_phdr[j].p_type;

 type = (p_type == PT_LOAD) ? "PT_LOAD" :

 (p_type == PT_DYNAMIC) ? "PT_DYNAMIC" :

 (p_type == PT_INTERP) ? "PT_INTERP" :

 (p_type == PT_NOTE) ? "PT_NOTE" :

 (p_type == PT_INTERP) ? "PT_INTERP" :

 (p_type == PT_PHDR) ? "PT_PHDR" :

 (p_type == PT_TLS) ? "PT_TLS" :

 (p_type == PT_GNU_EH_FRAME) ? "PT_GNU_EH_FRAME" :

 (p_type == PT_GNU_STACK) ? "PT_GNU_STACK" :

 (p_type == PT_GNU_RELRO) ? "PT_GNU_RELRO" : NULL; Page 6/7

 printf(" %2d: [%14p; memsz:%7jx] flags: %#jx; ", j,

 (void *) (info->dlpi_addr + info->dlpi_phdr[j].p_vaddr),

 (uintmax_t) info->dlpi_phdr[j].p_memsz,

 (uintmax_t) info->dlpi_phdr[j].p_flags);

 if (type != NULL)

 printf("%s\n", type);

 else

 printf("[other (%#x)]\n", p_type);

 }

 return 0;

 }

 int

 main(int argc, char *argv[])

 {

 dl_iterate_phdr(callback, NULL);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 ldd(1), objdump(1), readelf(1), dladdr(3), dlopen(3), elf(5), ld.so(8)

 Executable and Linking Format Specification, available at various loca?

 tions online.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 DL_ITERATE_PHDR(3)

Page 7/7

