
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'developers.7' command

$ man developers.7

DEVELOPERS(7) DEVELOPERS(7)

NAME

 developers - Developer Guide

 Description

 So, you've decided to use npm to develop (and maybe publish/deploy)

 your project.

 Fantastic!

 There are a few things that you need to do above the simple steps that

 your users will do to install your program.

 About These Documents

 These are man pages. If you install npm, you should be able to then do

 man npm-thing to get the documentation on a particular topic, or npm

 help thing to see the same information.

 What is a Package

 A package is:

 ? a) a folder containing a program described by a package.json file

 ? b) a gzipped tarball containing (a)

 ? c) a url that resolves to (b)

 ? d) a <name>@<version> that is published on the registry with (c)

 ? e) a <name>@<tag> that points to (d)

 ? f) a <name> that has a "latest" tag satisfying (e)

 ? g) a git url that, when cloned, results in (a).

 Even if you never publish your package, you can still get a lot of ben? Page 1/6

 efits of using npm if you just want to write a node program (a), and

 perhaps if you also want to be able to easily install it elsewhere af?

 ter packing it up into a tarball (b).

 Git urls can be of the form:

 git://github.com/user/project.git#commit-ish

 git+ssh://user@hostname:project.git#commit-ish

 git+http://user@hostname/project/blah.git#commit-ish

 git+https://user@hostname/project/blah.git#commit-ish

 The commit-ish can be any tag, sha, or branch which can be supplied as

 an argument to git checkout. The default is whatever the repository

 uses as its default branch.

 The package.json File

 You need to have a package.json file in the root of your project to do

 much of anything with npm. That is basically the whole interface.

 See package.json /configuring-npm/package-json for details about what

 goes in that file. At the very least, you need:

 ? name: This should be a string that identifies your project. Please

 do not use the name to specify that it runs on node, or is in Java?

 Script. You can use the "engines" field to explicitly state the ver?

 sions of node (or whatever else) that your program requires, and it's

 pretty well assumed that it's JavaScript. It does not necessarily

 need to match your github repository name. So, node-foo and bar-js

 are bad names. foo or bar are better.

 ? version: A semver-compatible version.

 ? engines: Specify the versions of node (or whatever else) that your

 program runs on. The node API changes a lot, and there may be bugs

 or new functionality that you depend on. Be explicit.

 ? author: Take some credit.

 ? scripts: If you have a special compilation or installation script,

 then you should put it in the scripts object. You should definitely

 have at least a basic smoke-test command as the "scripts.test" field.

 See npm help scripts.

 ? main: If you have a single module that serves as the entry point to Page 2/6

 your program (like what the "foo" package gives you at re?

 quire("foo")), then you need to specify that in the "main" field.

 ? directories: This is an object mapping names to folders. The best

 ones to include are "lib" and "doc", but if you use "man" to specify

 a folder full of man pages, they'll get installed just like these

 ones.

 You can use npm init in the root of your package in order to get you

 started with a pretty basic package.json file. See npm help init for

 more info.

 Keeping files out of your Package

 Use a .npmignore file to keep stuff out of your package. If there's no

 .npmignore file, but there is a .gitignore file, then npm will ignore

 the stuff matched by the .gitignore file. If you want to include some?

 thing that is excluded by your .gitignore file, you can create an empty

 .npmignore file to override it. Like git, npm looks for .npmignore and

 .gitignore files in all subdirectories of your package, not only the

 root directory.

 .npmignore files follow the same pattern rules

 https://git-scm.com/book/en/v2/Git-Basics-Record?

 ing-Changes-to-the-Repository#_ignoring as .gitignore files:

 ? Blank lines or lines starting with # are ignored.

 ? Standard glob patterns work.

 ? You can end patterns with a forward slash / to specify a directory.

 ? You can negate a pattern by starting it with an exclamation point !.

 By default, the following paths and files are ignored, so there's no

 need to add them to .npmignore explicitly:

 ? .*.swp

 ? ._*

 ? .DS_Store

 ? .git

 ? .gitignore

 ? .hg

 ? .npmignore Page 3/6

 ? .npmrc

 ? .lock-wscript

 ? .svn

 ? .wafpickle-*

 ? config.gypi

 ? CVS

 ? npm-debug.log

 Additionally, everything in node_modules is ignored, except for bundled

 dependencies. npm automatically handles this for you, so don't bother

 adding node_modules to .npmignore.

 The following paths and files are never ignored, so adding them to

 .npmignore is pointless:

 ? package.json

 ? README (and its variants)

 ? CHANGELOG (and its variants)

 ? LICENSE / LICENCE

 If, given the structure of your project, you find .npmignore to be a

 maintenance headache, you might instead try populating the files prop?

 erty of package.json, which is an array of file or directory names that

 should be included in your package. Sometimes manually picking which

 items to allow is easier to manage than building a block list.

 Testing whether your .npmignore or files config works

 If you want to double check that your package will include only the

 files you intend it to when published, you can run the npm pack command

 locally which will generate a tarball in the working directory, the

 same way it does for publishing.

 Link Packages

 npm link is designed to install a development package and see the

 changes in real time without having to keep re-installing it. (You do

 need to either re-link or npm rebuild -g to update compiled packages,

 of course.)

 More info at npm help link.

 Before Publishing: Make Sure Your Package Installs and Works Page 4/6

 This is important.

 If you can not install it locally, you'll have problems trying to pub?

 lish it. Or, worse yet, you'll be able to publish it, but you'll be

 publishing a broken or pointless package. So don't do that.

 In the root of your package, do this:

 npm install . -g

 That'll show you that it's working. If you'd rather just create a sym?

 link package that points to your working directory, then do this:

 npm link

 Use npm ls -g to see if it's there.

 To test a local install, go into some other folder, and then do:

 cd ../some-other-folder

 npm install ../my-package

 to install it locally into the node_modules folder in that other place.

 Then go into the node-repl, and try using require("my-thing") to bring

 in your module's main module.

 Create a User Account

 Create a user with the adduser command. It works like this:

 npm adduser

 and then follow the prompts.

 This is documented better in npm help adduser.

 Publish your Package

 This part's easy. In the root of your folder, do this:

 npm publish

 You can give publish a url to a tarball, or a filename of a tarball, or

 a path to a folder.

 Note that pretty much everything in that folder will be exposed by de?

 fault. So, if you have secret stuff in there, use a .npmignore file to

 list out the globs to ignore, or publish from a fresh checkout.

 Brag about it

 Send emails, write blogs, blab in IRC.

 Tell the world how easy it is to install your program!

 See also Page 5/6

 ? npm help npm

 ? npm help init

 ? package.json /configuring-npm/package-json

 ? npm help scripts

 ? npm help publish

 ? npm help adduser

 ? npm help registry

 February 2023 DEVELOPERS(7)

Page 6/6

