
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dependency-selectors.7' command

$ man dependency-selectors.7

DEPENDENCY() DEPENDENCY()

NAME

 Dependency

 Description

 The npm help query commmand exposes a new dependency selector syntax

 (informed by & respecting many aspects of the CSS Selectors 4 Spec

 https://dev.w3.org/csswg/selectors4/#relational) which:

 ? Standardizes the shape of, & querying of, dependency graphs with a

 robust object model, metadata & selector syntax

 ? Leverages existing, known language syntax & operators from CSS to

 make disparate package information broadly accessible

 ? Unlocks the ability to answer complex, multi-faceted questions about

 dependencies, their relationships & associative metadata

 ? Consolidates redundant logic of similar query commands in npm (ex.

 npm fund, npm ls, npm outdated, npm audit ...)

 Dependency Selector Syntax v1.0.0

 Overview:

 ? there is no "type" or "tag" selectors (ex. div, h1, a) as a depen?

 dency/target is the only type of Node that can be queried

 ? the term "dependencies" is in reference to any Node found in a tree

 returned by Arborist

 Combinators

 ? > direct descendant/child Page 1/6

 ?

 any descendant/child

 ? ~ sibling

 Selectors

 ? * universal selector

 ? #<name> dependency selector (equivalent to [name="..."])

 ? #<name>@<version> (equivalent to [name=<name>]:semver(<version>))

 ? , selector list delimiter

 ? . dependency type selector

 ? : pseudo selector

 Dependency Type Selectors

 ? .prod dependency found in the dependencies section of package.json,

 or is a child of said dependency

 ? .dev dependency found in the devDependencies section of package.json,

 or is a child of said dependency

 ? .optional dependency found in the optionalDependencies section of

 package.json, or has "optional": true set in its entry in the peerDe?

 pendenciesMeta section of package.json, or a child of said dependency

 ? .peer dependency found in the peerDependencies section of pack?

 age.json

 ? .workspace dependency found in the workspaces

 https://docs.npmjs.com/cli/v8/using-npm/workspaces section of pack?

 age.json

 ? .bundled dependency found in the bundleDependencies section of pack?

 age.json, or is a child of said dependency

 Pseudo Selectors

 ? :not(<selector>) https://devel?

 oper.mozilla.org/en-US/docs/Web/CSS/:not

 ? :has(<selector>) https://devel?

 oper.mozilla.org/en-US/docs/Web/CSS/:has

 ? :is(<selector list>) https://devel?

 oper.mozilla.org/en-US/docs/Web/CSS/:is

 ? :root https://developer.mozilla.org/en-US/docs/Web/CSS/:root matches Page 2/6

 the root node/dependency

 ? :scope https://developer.mozilla.org/en-US/docs/Web/CSS/:scope

 matches node/dependency it was queried against

 ? :empty https://developer.mozilla.org/en-US/docs/Web/CSS/:empty when a

 dependency has no dependencies

 ? :private https://docs.npmjs.com/cli/v8/configuring-npm/pack?

 age-json#private when a dependency is private

 ? :link when a dependency is linked (for instance, workspaces or pack?

 ages manually linked https://docs.npmjs.com/cli/v8/commands/npm-link

 ? :deduped when a dependency has been deduped (note that this does not

 always mean the dependency has been hoisted to the root of node_mod?

 ules)

 ? :overridden when a dependency has been overridden

 ? :extraneous when a dependency exists but is not defined as a depen?

 dency of any node

 ? :invalid when a dependency version is out of its ancestors specified

 range

 ? :missing when a dependency is not found on disk

 ? :semver(<spec>) matching a valid node-semver

 https://github.com/npm/node-semver spec

 ? :path(<path>) glob https://www.npmjs.com/package/glob matching based

 on dependencies path relative to the project

 ? :type(<type>) based on currently recognized types

 https://github.com/npm/npm-package-arg#result-object

 Attribute Selectors https://developer.mozilla.org/en-US/docs/Web/CSS/Attri?

 bute_selectors

 The attribute selector evaluates the key/value pairs in package.json if

 they are Strings.

 ? [] attribute selector (ie. existence of attribute)

 ? [attribute=value] attribute value is equivalant...

 ? [attribute~=value] attribute value contains word...

 ? [attribute*=value] attribute value contains string...

 ? [attribute|=value] attribute value is equal to or starts with... Page 3/6

 ? [attribute^=value] attribute value starts with...

 ? [attribute$=value] attribute value ends with...

 Array & Object Attribute Selectors

 The generic :attr() pseudo selector standardizes a pattern which can be

 used for attribute selection of Objects, Arrays or Arrays of Objects

 accessible via Arborist's Node.package metadata. This allows for itera?

 tive attribute selection beyond top-level String evaluation. The last

 argument passed to :attr() must be an attribute selector or a nested

 :attr(). See examples below:

 Objects

 /* return dependencies that have a `scripts.test` containing `"tap"` */

 *:attr(scripts, [test~=tap])

 Nested Objects

 Nested objects are expressed as sequential arguments to :attr().

 /* return dependencies that have a testling config for opera browsers */

 *:attr(testling, browsers, [~=opera])

 Arrays

 Arrays specifically uses a special/reserved . character in place of a

 typical attribute name. Arrays also support exact value matching when a

 String is passed to the selector.

 Example of an Array Attribute Selection:

 /* removes the distinction between properties & arrays */

 /* ie. we'd have to check the property & iterate to match selection */

 *:attr([keywords^=react])

 *:attr(contributors, :attr([name~=Jordan]))

 Example of an Array matching directly to a value:

 /* return dependencies that have the exact keyword "react" */

 /* this is equivalent to `*:keywords([value="react"])` */

 *:attr([keywords=react])

 Example of an Array of Objects:

 /* returns */

 *:attr(contributors, [email=ruyadorno@github.com])

 Groups Page 4/6

 Dependency groups are defined by the package relationships to their an?

 cestors (ie. the dependency types that are defined in package.json).

 This approach is user-centric as the ecosystem has been taught to think

 about dependencies in these groups first-and-foremost. Dependencies are

 allowed to be included in multiple groups (ex. a prod dependency may

 also be a dev dependency (in that it's also required by another dev de?

 pendency) & may also be bundled - a selector for that type of depen?

 dency would look like: *.prod.dev.bundled).

 ? .prod

 ? .dev

 ? .optional

 ? .peer

 ? .bundled

 ? .workspace

 Please note that currently workspace deps are always prod dependencies.

 Additionally the .root dependency is also considered a prod dependency.

 Programmatic Usage

 ? Arborist's Node Class has a .querySelectorAll() method

 ? this method will return a filtered, flattened dependency Arborist

 Node list based on a valid query selector

 const Arborist = require('@npmcli/arborist')

 const arb = new Arborist({})

 // root-level

 arb.loadActual().then(async (tree) => {

 // query all production dependencies

 const results = await tree.querySelectorAll('.prod')

 console.log(results)

 })

 // iterative

 arb.loadActual().then(async (tree) => {

 // query for the deduped version of react

 const results = await tree.querySelectorAll('#react:not(:deduped)')

 // query the deduped react for git deps Page 5/6

 const deps = await results[0].querySelectorAll(':type(git)')

 console.log(deps)

 })

See Also

 ? npm help query

 ? @npmcli/arborist https://npm.im/@npmcli/arborist

 February 2023 DEPENDENCY()

Page 6/6

