
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'delete_module.2' command

$ man delete_module.2

DELETE_MODULE(2) Linux Programmer's Manual DELETE_MODULE(2)

NAME

 delete_module - unload a kernel module

SYNOPSIS

 int delete_module(const char *name, int flags);

 Note: No declaration of this system call is provided in glibc headers;

 see NOTES.

DESCRIPTION

 The delete_module() system call attempts to remove the unused loadable

 module entry identified by name. If the module has an exit function,

 then that function is executed before unloading the module. The flags

 argument is used to modify the behavior of the system call, as de?

 scribed below. This system call requires privilege.

 Module removal is attempted according to the following rules:

 1. If there are other loaded modules that depend on (i.e., refer to

 symbols defined in) this module, then the call fails.

 2. Otherwise, if the reference count for the module (i.e., the number

 of processes currently using the module) is zero, then the module

 is immediately unloaded.

 3. If a module has a nonzero reference count, then the behavior de?

 pends on the bits set in flags. In normal usage (see NOTES), the

 O_NONBLOCK flag is always specified, and the O_TRUNC flag may addi?

 tionally be specified. Page 1/4

 The various combinations for flags have the following effect:

 flags == O_NONBLOCK

 The call returns immediately, with an error.

 flags == (O_NONBLOCK | O_TRUNC)

 The module is unloaded immediately, regardless of whether it

 has a nonzero reference count.

 (flags & O_NONBLOCK) == 0

 If flags does not specify O_NONBLOCK, the following steps

 occur:

 * The module is marked so that no new references are per?

 mitted.

 * If the module's reference count is nonzero, the caller is

 placed in an uninterruptible sleep state (TASK_UNINTER?

 RUPTIBLE) until the reference count is zero, at which

 point the call unblocks.

 * The module is unloaded in the usual way.

 The O_TRUNC flag has one further effect on the rules described above.

 By default, if a module has an init function but no exit function, then

 an attempt to remove the module fails. However, if O_TRUNC was speci?

 fied, this requirement is bypassed.

 Using the O_TRUNC flag is dangerous! If the kernel was not built with

 CONFIG_MODULE_FORCE_UNLOAD, this flag is silently ignored. (Normally,

 CONFIG_MODULE_FORCE_UNLOAD is enabled.) Using this flag taints the

 kernel (TAINT_FORCED_RMMOD).

RETURN VALUE

 On success, zero is returned. On error, -1 is returned and errno is

 set appropriately.

ERRORS

 EBUSY The module is not "live" (i.e., it is still being initialized or

 is already marked for removal); or, the module has an init func?

 tion but has no exit function, and O_TRUNC was not specified in

 flags.

 EFAULT name refers to a location outside the process's accessible ad? Page 2/4

 dress space.

 ENOENT No module by that name exists.

 EPERM The caller was not privileged (did not have the CAP_SYS_MODULE

 capability), or module unloading is disabled (see /proc/sys/ker?

 nel/modules_disabled in proc(5)).

 EWOULDBLOCK

 Other modules depend on this module; or, O_NONBLOCK was speci?

 fied in flags, but the reference count of this module is nonzero

 and O_TRUNC was not specified in flags.

CONFORMING TO

 delete_module() is Linux-specific.

NOTES

 The delete_module() system call is not supported by glibc. No declara?

 tion is provided in glibc headers, but, through a quirk of history,

 glibc versions before 2.23 did export an ABI for this system call.

 Therefore, in order to employ this system call, it is (before glibc

 2.23) sufficient to manually declare the interface in your code; alter?

 natively, you can invoke the system call using syscall(2).

 The uninterruptible sleep that may occur if O_NONBLOCK is omitted from

 flags is considered undesirable, because the sleeping process is left

 in an unkillable state. As at Linux 3.7, specifying O_NONBLOCK is op?

 tional, but in future kernels it is likely to become mandatory.

 Linux 2.4 and earlier

 In Linux 2.4 and earlier, the system call took only one argument:

 int delete_module(const char *name);

 If name is NULL, all unused modules marked auto-clean are removed.

 Some further details of differences in the behavior of delete_module()

 in Linux 2.4 and earlier are not currently explained in this manual

 page.

SEE ALSO

 create_module(2), init_module(2), query_module(2), lsmod(8), mod?

 probe(8), rmmod(8)

COLOPHON Page 3/4

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 DELETE_MODULE(2)

Page 4/4

