
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dc.1' command

$ man dc.1

dc(1) General Commands Manual dc(1)

NAME

 dc - an arbitrary precision calculator

SYNOPSIS

 dc [-V] [--version] [-h] [--help]

 [-e scriptexpression] [--expression=scriptexpression]

 [-f scriptfile] [--file=scriptfile]

 [file ...]

DESCRIPTION

 dc is a reverse-polish desk calculator which supports unlimited preci?

 sion arithmetic. It also allows you to define and call macros. Nor?

 mally dc reads from the standard input; if any command arguments are

 given to it, they are filenames, and dc reads and executes the contents

 of the files before reading from standard input. All normal output is

 to standard output; all error output is to standard error.

 A reverse-polish calculator stores numbers on a stack. Entering a num?

 ber pushes it on the stack. Arithmetic operations pop arguments off

 the stack and push the results.

 To enter a number in dc, type the digits (using upper case letters A

 through F as "digits" when working with input bases greater than ten),

 with an optional decimal point. Exponential notation is not supported.

 To enter a negative number, begin the number with ``_''. ``-'' cannot

 be used for this, as it is a binary operator for subtraction instead. Page 1/8

 To enter two numbers in succession, separate them with spaces or new?

 lines. These have no meaning as commands.

OPTIONS

 dc may be invoked with the following command-line options:

 -V

 --version

 Print out the version of dc that is being run and a copyright

 notice, then exit.

 -h

 --help Print a usage message briefly summarizing these command-line op?

 tions and the bug-reporting address, then exit.

 -e script

 --expression=script

 Add the commands in script to the set of commands to be run

 while processing the input.

 -f script-file

 --file=script-file

 Add the commands contained in the file script-file to the set of

 commands to be run while processing the input.

 If any command-line parameters remain after processing the above, these

 parameters are interpreted as the names of input files to be processed.

 A file name of - refers to the standard input stream. The standard in?

 put will processed if no script files or expressions are specified.

Printing Commands

 p Prints the value on the top of the stack, without altering the

 stack. A newline is printed after the value.

 n Prints the value on the top of the stack, popping it off, and

 does not print a newline after.

 P Pops off the value on top of the stack. If it it a string, it

 is simply printed without a trailing newline. Otherwise it is a

 number, and the integer portion of its absolute value is printed

 out as a "base (UCHAR_MAX+1)" byte stream. Assuming that

 (UCHAR_MAX+1) is 256 (as it is on most machines with 8-bit Page 2/8

 bytes), the sequence KSK0k1/_1Ss [ls*]Sxd0>x

 [256~Ssd0<x]dsxxsx[q]Sq[Lsd0>qaPlxx] dsxxsx0sqLqsxLxLK+k could

 also accomplish this function. (Much of the complexity of the

 above native-dc code is due to the ~ computing the characters

 backwards, and the desire to ensure that all registers wind up

 back in their original states.)

 f Prints the entire contents of the stack without altering any?

 thing. This is a good command to use if you are lost or want to

 figure out what the effect of some command has been.

Arithmetic

 + Pops two values off the stack, adds them, and pushes the result.

 The precision of the result is determined only by the values of

 the arguments, and is enough to be exact.

 - Pops two values, subtracts the first one popped from the second

 one popped, and pushes the result.

 * Pops two values, multiplies them, and pushes the result. The

 number of fraction digits in the result depends on the current

 precision value and the number of fraction digits in the two ar?

 guments.

 / Pops two values, divides the second one popped from the first

 one popped, and pushes the result. The number of fraction dig?

 its is specified by the precision value.

 % Pops two values, computes the remainder of the division that the

 / command would do, and pushes that. The value computed is the

 same as that computed by the sequence Sd dld/ Ld*- .

 ~ Pops two values, divides the second one popped from the first

 one popped. The quotient is pushed first, and the remainder is

 pushed next. The number of fraction digits used in the division

 is specified by the precision value. (The sequence SdSn lnld/

 LnLd% could also accomplish this function, with slightly differ?

 ent error checking.)

 ^ Pops two values and exponentiates, using the first value popped

 as the exponent and the second popped as the base. The fraction Page 3/8

 part of the exponent is ignored. The precision value specifies

 the number of fraction digits in the result.

 | Pops three values and computes a modular exponentiation. The

 first value popped is used as the reduction modulus; this value

 must be a non-zero number, and should be an integer. The second

 popped is used as the exponent; this value must be a non-nega?

 tive number, and any fractional part of this exponent will be

 ignored. The third value popped is the base which gets exponen?

 tiated, which should be an integer. For small integers this is

 like the sequence Sm^Lm%, but, unlike ^, this command will work

 with arbitrarily large exponents.

 v Pops one value, computes its square root, and pushes that. The

 maximum of the precision value and the precision of the argument

 is used to determine the number of fraction digits in the re?

 sult.

 Most arithmetic operations are affected by the ``precision value'',

 which you can set with the k command. The default precision value is

 zero, which means that all arithmetic except for addition and subtrac?

 tion produces integer results.

Stack Control

 c Clears the stack, rendering it empty.

 d Duplicates the value on the top of the stack, pushing another

 copy of it. Thus, ``4d*p'' computes 4 squared and prints it.

 r Reverses the order of (swaps) the top two values on the stack.

 (This can also be accomplished with the sequence SaSbLaLb.)

 R Pops the top-of-stack as an integer n. Cyclically rotates the

 top n items on the updated stack. If n is positive, then the

 rotation direction will make the topmost element the second-from

 top; if n is negative, then the rotation will make the topmost

 element the n-th element from the top. If the stack depth is

 less than n, then the entire stack is rotated (in the appropri?

 ate direction), without any error being reported.

Registers Page 4/8

 dc provides at least 256 memory registers, each named by a single char?

 acter. You can store a number or a string in a register and retrieve

 it later.

 sr Pop the value off the top of the stack and store it into regis?

 ter r.

 lr Copy the value in register r and push it onto the stack. The

 value 0 is retrieved if the register is uninitialized. This

 does not alter the contents of r.

 Each register also contains its own stack. The current register value

 is the top of the register's stack.

 Sr Pop the value off the top of the (main) stack and push it onto

 the stack of register r. The previous value of the register be?

 comes inaccessible.

 Lr Pop the value off the top of register r's stack and push it onto

 the main stack. The previous value in register r's stack, if

 any, is now accessible via the lr command.

Parameters

 dc has three parameters that control its operation: the precision, the

 input radix, and the output radix. The precision specifies the number

 of fraction digits to keep in the result of most arithmetic operations.

 The input radix controls the interpretation of numbers typed in; all

 numbers typed in use this radix. The output radix is used for printing

 numbers.

 The input and output radices are separate parameters; you can make them

 unequal, which can be useful or confusing. The input radix must be be?

 tween 2 and 16 inclusive. The output radix must be at least 2. The

 precision must be zero or greater. The precision is always measured in

 decimal digits, regardless of the current input or output radix.

 i Pops the value off the top of the stack and uses it to set the

 input radix.

 o Pops the value off the top of the stack and uses it to set the

 output radix.

 k Pops the value off the top of the stack and uses it to set the Page 5/8

 precision.

 I Pushes the current input radix on the stack.

 O Pushes the current output radix on the stack.

 K Pushes the current precision on the stack.

Strings

 dc has a limited ability to operate on strings as well as on numbers;

 the only things you can do with strings are print them and execute them

 as macros (which means that the contents of the string are processed as

 dc commands). All registers and the stack can hold strings, and dc al?

 ways knows whether any given object is a string or a number. Some com?

 mands such as arithmetic operations demand numbers as arguments and

 print errors if given strings. Other commands can accept either a num?

 ber or a string; for example, the p command can accept either and

 prints the object according to its type.

 [characters]

 Makes a string containing characters (contained between balanced

 [and] characters), and pushes it on the stack. For example,

 [foo]P prints the characters foo (with no newline).

 a The top-of-stack is popped. If it was a number, then the low-

 order byte of this number is converted into a string and pushed

 onto the stack. Otherwise the top-of-stack was a string, and

 the first character of that string is pushed back.

 x Pops a value off the stack and executes it as a macro. Normally

 it should be a string; if it is a number, it is simply pushed

 back onto the stack. For example, [1p]x executes the macro 1p

 which pushes 1 on the stack and prints 1 on a separate line.

 Macros are most often stored in registers; [1p]sa stores a macro to

 print 1 into register a, and lax invokes this macro.

 >r Pops two values off the stack and compares them assuming they

 are numbers, executing the contents of register r as a macro if

 the original top-of-stack is greater. Thus, 1 2>a will invoke

 register a's contents and 2 1>a will not.

 !>r Similar but invokes the macro if the original top-of-stack is Page 6/8

 not greater than (less than or equal to) what was the second-to-

 top.

 <r Similar but invokes the macro if the original top-of-stack is

 less.

 !<r Similar but invokes the macro if the original top-of-stack is

 not less than (greater than or equal to) what was the second-to-

 top.

 =r Similar but invokes the macro if the two numbers popped are

 equal.

 !=r Similar but invokes the macro if the two numbers popped are not

 equal.

 ? Reads a line from the terminal and executes it. This command

 allows a macro to request input from the user.

 q exits from a macro and also from the macro which invoked it. If

 called from the top level, or from a macro which was called di?

 rectly from the top level, the q command will cause dc to exit.

 Q Pops a value off the stack and uses it as a count of levels of

 macro execution to be exited. Thus, 3Q exits three levels. The

 Q command will never cause dc to exit.

Status Inquiry

 Z Pops a value off the stack, calculates the number of decimal

 digits it has (or number of characters, if it is a string) and

 pushes that number. The digit count for a number does not in?

 clude any leading zeros, even if those appear to the right of

 the radix point.

 X Pops a value off the stack, calculates the number of fraction

 digits it has, and pushes that number. For a string, the value

 pushed is 0.

 z Pushes the current stack depth: the number of objects on the

 stack before the execution of the z command.

Miscellaneous

 ! Will run the rest of the line as a system command. Note that

 parsing of the !<, !=, and !> commands take precedence, so if Page 7/8

 you want to run a command starting with <, =, or > you will need

 to add a space after the !.

 # Will interpret the rest of the line as a comment.

 :r Will pop the top two values off of the stack. The old second-

 to-top value will be stored in the array r, indexed by the old

 top-of-stack value.

 ;r Pops the top-of-stack and uses it as an index into the array r.

 The selected value is then pushed onto the stack.

 Note that each stacked instance of a register has its own array associ?

 ated with it. Thus 1 0:a 0Sa 2 0:a La 0;ap will print 1, because the 2

 was stored in an instance of 0:a that was later popped.

BUGS

 Email bug reports to bug-dc@gnu.org.

GNU Project 2008-05-22 dc(1)

Page 8/8

