
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dbus-daemon.1' command

$ man dbus-daemon.1

DBUS-DAEMON(1) User Commands DBUS-DAEMON(1)

NAME

 dbus-daemon - Message bus daemon

SYNOPSIS

 dbus-daemon

 dbus-daemon [--version] [--session] [--system] [--config-file=FILE]

 [--print-address [=DESCRIPTOR]] [--print-pid [=DESCRIPTOR]]

 [--fork] [--nosyslog] [--syslog] [--syslog-only]

DESCRIPTION

 dbus-daemon is the D-Bus message bus daemon. See

 http://www.freedesktop.org/software/dbus/ for more information about

 the big picture. D-Bus is first a library that provides one-to-one

 communication between any two applications; dbus-daemon is an

 application that uses this library to implement a message bus daemon.

 Multiple programs connect to the message bus daemon and can exchange

 messages with one another.

 There are two standard message bus instances: the systemwide message

 bus (installed on many systems as the "messagebus" init service) and

 the per-user-login-session message bus (started each time a user logs

 in). dbus-daemon is used for both of these instances, but with a

 different configuration file.

 The --session option is equivalent to

 "--config-file=/usr/share/dbus-1/session.conf" and the --system option Page 1/23

 is equivalent to "--config-file=/usr/share/dbus-1/system.conf". By

 creating additional configuration files and using the --config-file

 option, additional special-purpose message bus daemons could be

 created.

 The systemwide daemon is normally launched by an init script,

 standardly called simply "messagebus".

 The systemwide daemon is largely used for broadcasting system events,

 such as changes to the printer queue, or adding/removing devices.

 The per-session daemon is used for various interprocess communication

 among desktop applications (however, it is not tied to X or the GUI in

 any way).

 SIGHUP will cause the D-Bus daemon to PARTIALLY reload its

 configuration file and to flush its user/group information caches. Some

 configuration changes would require kicking all apps off the bus; so

 they will only take effect if you restart the daemon. Policy changes

 should take effect with SIGHUP.

OPTIONS

 The following options are supported:

 --config-file=FILE

 Use the given configuration file.

 --fork

 Force the message bus to fork and become a daemon, even if the

 configuration file does not specify that it should. In most

 contexts the configuration file already gets this right, though.

 This option is not supported on Windows.

 --nofork

 Force the message bus not to fork and become a daemon, even if the

 configuration file specifies that it should. On Windows, the

 dbus-daemon never forks, so this option is allowed but does

 nothing.

 --print-address[=DESCRIPTOR]

 Print the address of the message bus to standard output, or to the

 given file descriptor. This is used by programs that launch the Page 2/23

 message bus.

 --print-pid[=DESCRIPTOR]

 Print the process ID of the message bus to standard output, or to

 the given file descriptor. This is used by programs that launch the

 message bus.

 --session

 Use the standard configuration file for the per-login-session

 message bus.

 --system

 Use the standard configuration file for the systemwide message bus.

 --version

 Print the version of the daemon.

 --introspect

 Print the introspection information for all D-Bus internal

 interfaces.

 --address[=ADDRESS]

 Set the address to listen on. This option overrides the address

 configured in the configuration file via the <listen> directive.

 See the documentation of that directive for more details.

 --systemd-activation

 Enable systemd-style service activation. Only useful in conjunction

 with the systemd system and session manager on Linux.

 --nopidfile

 Don't write a PID file even if one is configured in the

 configuration files.

 --syslog

 Force the message bus to use the system log for messages, in

 addition to writing to standard error, even if the configuration

 file does not specify that it should. On Unix, this uses the

 syslog; on Windows, this uses OutputDebugString().

 --syslog-only

 Force the message bus to use the system log for messages, and not

 duplicate them to standard error. On Unix, this uses the syslog; on Page 3/23

 Windows, this uses OutputDebugString().

 --nosyslog

 Force the message bus to use only standard error for messages, even

 if the configuration file specifies that it should use the system

 log.

CONFIGURATION FILE

 A message bus daemon has a configuration file that specializes it for a

 particular application. For example, one configuration file might set

 up the message bus to be a systemwide message bus, while another might

 set it up to be a per-user-login-session bus.

 The configuration file also establishes resource limits, security

 parameters, and so forth.

 The configuration file is not part of any interoperability

 specification and its backward compatibility is not guaranteed; this

 document is documentation, not specification.

 The standard systemwide and per-session message bus setups are

 configured in the files "/usr/share/dbus-1/system.conf" and

 "/usr/share/dbus-1/session.conf". These files normally <include> a

 system-local.conf or session-local.conf in /etc/dbus-1; you can put

 local overrides in those files to avoid modifying the primary

 configuration files.

 The configuration file is an XML document. It must have the following

 doctype declaration:

 <!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-Bus Bus Configuration 1.0//EN"

 "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

 The following elements may be present in the configuration file.

 ? <busconfig>

 Root element.

 ? <type>

 The well-known type of the message bus. Currently known values are

 "system" and "session"; if other values are set, they should be either

 added to the D-Bus specification, or namespaced. The last <type>

 element "wins" (previous values are ignored). This element only Page 4/23

 controls which message bus specific environment variables are set in

 activated clients. Most of the policy that distinguishes a session bus

 from the system bus is controlled from the other elements in the

 configuration file.

 If the well-known type of the message bus is "session", then the

 DBUS_STARTER_BUS_TYPE environment variable will be set to "session" and

 the DBUS_SESSION_BUS_ADDRESS environment variable will be set to the

 address of the session bus. Likewise, if the type of the message bus is

 "system", then the DBUS_STARTER_BUS_TYPE environment variable will be

 set to "system" and the DBUS_SYSTEM_BUS_ADDRESS environment variable

 will be set to the address of the system bus (which is normally well

 known anyway).

 Example: <type>session</type>

 ? <include>

 Include a file <include>filename.conf</include> at this point. If the

 filename is relative, it is located relative to the configuration file

 doing the including.

 <include> has an optional attribute "ignore_missing=(yes|no)" which

 defaults to "no" if not provided. This attribute controls whether it's

 a fatal error for the included file to be absent.

 ? <includedir>

 Include all files in <includedir>foo.d</includedir> at this point.

 Files in the directory are included in undefined order. Only files

 ending in ".conf" are included.

 This is intended to allow extension of the system bus by particular

 packages. For example, if CUPS wants to be able to send out

 notification of printer queue changes, it could install a file to

 /usr/share/dbus-1/system.d or /etc/dbus-1/system.d that allowed all

 apps to receive this message and allowed the printer daemon user to

 send it.

 ? <user>

 The user account the daemon should run as, as either a username or a

 UID. If the daemon cannot change to this UID on startup, it will exit. Page 5/23

 If this element is not present, the daemon will not change or care

 about its UID.

 The last <user> entry in the file "wins", the others are ignored.

 The user is changed after the bus has completed initialization. So

 sockets etc. will be created before changing user, but no data will be

 read from clients before changing user. This means that sockets and PID

 files can be created in a location that requires root privileges for

 writing.

 ? <fork>

 If present, the bus daemon becomes a real daemon (forks into the

 background, etc.). This is generally used rather than the --fork

 command line option.

 ? <keep_umask>

 If present, the bus daemon keeps its original umask when forking. This

 may be useful to avoid affecting the behavior of child processes.

 ? <syslog>

 If present, the bus daemon will log to syslog. The --syslog,

 --syslog-only and --nosyslog command-line options take precedence over

 this setting.

 ? <pidfile>

 If present, the bus daemon will write its pid to the specified file.

 The --nopidfile command-line option takes precedence over this setting.

 ? <allow_anonymous>

 If present, connections that authenticated using the ANONYMOUS

 mechanism will be authorized to connect. This option has no practical

 effect unless the ANONYMOUS mechanism has also been enabled using the

 <auth> element, described below.

 Using this directive in the configuration of the well-known system bus

 or the well-known session bus will make that bus insecure and should

 never be done. Similarly, on custom bus types, using this directive

 will usually make the custom bus insecure, unless its configuration has

 been specifically designed to prevent anonymous users from causing

 damage or escalating privileges. Page 6/23

 ? <listen>

 Add an address that the bus should listen on. The address is in the

 standard D-Bus format that contains a transport name plus possible

 parameters/options.

 On platforms other than Windows, unix-based transports (unix, systemd,

 launchd) are the default for both the well-known system bus and the

 well-known session bus, and are strongly recommended.

 On Windows, unix-based transports are not available, so TCP-based

 transports must be used. Similar to remote X11, the tcp and nonce-tcp

 transports have no integrity or confidentiality protection, so they

 should normally only be used across the local loopback interface, for

 example using an address like tcp:host=127.0.0.1 or

 nonce-tcp:host=localhost. In particular, configuring the well-known

 system bus or the well-known session bus to listen on a non-loopback

 TCP address is insecure.

 Developers are sometimes tempted to use remote TCP as a debugging tool.

 However, if this functionality is left enabled in finished products,

 the result will be dangerously insecure. Instead of using remote TCP,

 developers should relay connections via Secure Shell or a similar

 protocol[1].

 Remote TCP connections were historically sometimes used to share a

 single session bus between login sessions of the same user on different

 machines within a trusted local area network, in conjunction with

 unencrypted remote X11, a NFS-shared home directory and NIS (YP)

 authentication. This is insecure against an attacker on the same LAN

 and should be considered strongly deprecated; more specifically, it is

 insecure in the same ways and for the same reasons as unencrypted

 remote X11 and NFSv2/NFSv3. The D-Bus maintainers recommend using a

 separate session bus per (user, machine) pair, only accessible from

 within that machine.

 Example: <listen>unix:path=/tmp/foo</listen>

 Example: <listen>tcp:host=localhost,port=1234</listen>

 If there are multiple <listen> elements, then the bus listens on Page 7/23

 multiple addresses. The bus will pass its address to started services

 or other interested parties with the last address given in <listen>

 first. That is, apps will try to connect to the last <listen> address

 first.

 tcp sockets can accept IPv4 addresses, IPv6 addresses or hostnames. If

 a hostname resolves to multiple addresses, the server will bind to all

 of them. The family=ipv4 or family=ipv6 options can be used to force it

 to bind to a subset of addresses

 Example: <listen>tcp:host=localhost,port=0,family=ipv4</listen>

 A special case is using a port number of zero (or omitting the port),

 which means to choose an available port selected by the operating

 system. The port number chosen can be obtained with the --print-address

 command line parameter and will be present in other cases where the

 server reports its own address, such as when DBUS_SESSION_BUS_ADDRESS

 is set.

 Example: <listen>tcp:host=localhost,port=0</listen>

 tcp/nonce-tcp addresses also allow a bind=hostname option, used in a

 listenable address to configure the interface on which the server will

 listen: either the hostname is the IP address of one of the local

 machine's interfaces (most commonly 127.0.0.1), a DNS name that

 resolves to one of those IP addresses, '0.0.0.0' to listen on all IPv4

 interfaces simultaneously, or '::' to listen on all IPv4 and IPv6

 interfaces simultaneously (if supported by the OS). If not specified,

 the default is the same value as "host".

 Example: <listen>tcp:host=localhost,bind=0.0.0.0,port=0</listen>

 ? <auth>

 Lists permitted authorization mechanisms. If this element doesn't

 exist, then all known mechanisms are allowed. If there are multiple

 <auth> elements, all the listed mechanisms are allowed. The order in

 which mechanisms are listed is not meaningful.

 On non-Windows operating systems, allowing only the EXTERNAL

 authentication mechanism is strongly recommended. This is the default

 for the well-known system bus and for the well-known session bus. Page 8/23

 Example: <auth>EXTERNAL</auth>

 Example: <auth>DBUS_COOKIE_SHA1</auth>

 ? <servicedir>

 Adds a directory to search for .service files, which tell the

 dbus-daemon how to start a program to provide a particular well-known

 bus name. See the D-Bus Specification for more details about the

 contents of .service files.

 If a particular service is found in more than one <servicedir>, the

 first directory listed in the configuration file takes precedence. If

 two service files providing the same well-known bus name are found in

 the same directory, it is arbitrary which one will be chosen (this can

 only happen if at least one of the service files does not have the

 recommended name, which is its well-known bus name followed by

 ".service").

 ? <standard_session_servicedirs/>

 <standard_session_servicedirs/> requests a standard set of session

 service directories. Its effect is similar to specifying a series of

 <servicedir/> elements for each of the data directories, in the order

 given here. It is not exactly equivalent, because there is currently no

 way to disable directory monitoring or enforce strict service file

 naming for a <servicedir/>.

 As with <servicedir/> elements, if a particular service is found in

 more than one service directory, the first directory takes precedence.

 If two service files providing the same well-known bus name are found

 in the same directory, it is arbitrary which one will be chosen (this

 can only happen if at least one of the service files does not have the

 recommended name, which is its well-known bus name followed by

 ".service").

 On Unix, the standard session service directories are:

 ? $XDG_RUNTIME_DIR/dbus-1/services, if XDG_RUNTIME_DIR is set (see

 the XDG Base Directory Specification for details of

 XDG_RUNTIME_DIR): this location is suitable for transient services

 created at runtime by systemd generators (see Page 9/23

 systemd.generator(7)), session managers or other session

 infrastructure. It is an extension provided by the reference

 implementation of dbus-daemon, and is not standardized in the D-Bus

 Specification.

 Unlike the other standard session service directories, this

 directory enforces strict naming for the service files: the

 filename must be exactly the well-known bus name of the service,

 followed by ".service".

 Also unlike the other standard session service directories, this

 directory is never monitored with inotify(7) or similar APIs.

 Programs that create service files in this directory while a

 dbus-daemon is running are expected to call the dbus-daemon's

 ReloadConfig() method after they have made changes.

 ? $XDG_DATA_HOME/dbus-1/services, where XDG_DATA_HOME defaults to

 ~/.local/share (see the XDG Base Directory Specification): this

 location is specified by the D-Bus Specification, and is suitable

 for per-user, locally-installed software.

 ? directory/dbus-1/services for each directory in XDG_DATA_DIRS,

 where XDG_DATA_DIRS defaults to /usr/local/share:/usr/share (see

 the XDG Base Directory Specification): these locations are

 specified by the D-Bus Specification. The defaults are suitable for

 software installed locally by a system administrator

 (/usr/local/share) or for software installed from operating system

 packages (/usr/share). Per-user or system-wide configuration that

 sets the XDG_DATA_DIRS environment variable can extend this search

 path to cover installations in other locations, for example

 ~/.local/share/flatpak/exports/share/ and

 /var/lib/flatpak/exports/share/ when flatpak(1) is used.

 ? ${datadir}/dbus-1/services for the ${datadir} that was specified

 when dbus was compiled, typically /usr/share: this location is an

 extension provided by the reference dbus-daemon implementation, and

 is suitable for software stacks installed alongside dbus-daemon.

 The "XDG Base Directory Specification" can be found at Page 10/23

 http://freedesktop.org/wiki/Standards/basedir-spec if it hasn't moved,

 otherwise try your favorite search engine.

 On Windows, the standard session service directories are:

 ? %CommonProgramFiles%/dbus-1/services if %CommonProgramFiles% is

 set: this location is suitable for system-wide installed software

 packages

 ? A share/dbus-1/services directory found in the same directory

 hierarchy (prefix) as the dbus-daemon: this location is suitable

 for software stacks installed alongside dbus-daemon

 The <standard_session_servicedirs/> option is only relevant to the

 per-user-session bus daemon defined in /etc/dbus-1/session.conf.

 Putting it in any other configuration file would probably be nonsense.

 ? <standard_system_servicedirs/>

 <standard_system_servicedirs/> specifies the standard system-wide

 activation directories that should be searched for service files. As

 with session services, the first directory listed has highest

 precedence.

 On Unix, the standard session service directories are:

 ? /usr/local/share/dbus-1/system-services: this location is specified

 by the D-Bus Specification, and is suitable for software installed

 locally by the system administrator

 ? /usr/share/dbus-1/system-services: this location is specified by

 the D-Bus Specification, and is suitable for software installed by

 operating system packages

 ? ${datadir}/dbus-1/system-services for the ${datadir} that was

 specified when dbus was compiled, typically /usr/share: this

 location is an extension provided by the reference dbus-daemon

 implementation, and is suitable for software stacks installed

 alongside dbus-daemon

 ? /lib/dbus-1/system-services: this location is specified by the

 D-Bus Specification, and was intended for software installed by

 operating system packages and used during early boot (but it should

 be considered deprecated, because the reference dbus-daemon is not Page 11/23

 designed to be available during early boot)

 On Windows, there is no standard system bus, so there are no standard

 system bus directories either.

 The <standard_system_servicedirs/> option is only relevant to the

 per-system bus daemon defined in /usr/share/dbus-1/system.conf. Putting

 it in any other configuration file would probably be nonsense.

 ? <servicehelper/>

 <servicehelper/> specifies the setuid helper that is used to launch

 system daemons with an alternate user. Typically this should be the

 dbus-daemon-launch-helper executable in located in libexec.

 The <servicehelper/> option is only relevant to the per-system bus

 daemon defined in /usr/share/dbus-1/system.conf. Putting it in any

 other configuration file would probably be nonsense.

 ? <limit>

 <limit> establishes a resource limit. For example:

 <limit name="max_message_size">64</limit>

 <limit name="max_completed_connections">512</limit>

 The name attribute is mandatory. Available limit names are:

 "max_incoming_bytes" : total size in bytes of messages

 incoming from a single connection

 "max_incoming_unix_fds" : total number of unix fds of messages

 incoming from a single connection

 "max_outgoing_bytes" : total size in bytes of messages

 queued up for a single connection

 "max_outgoing_unix_fds" : total number of unix fds of messages

 queued up for a single connection

 "max_message_size" : max size of a single message in

 bytes

 "max_message_unix_fds" : max unix fds of a single message

 "service_start_timeout" : milliseconds (thousandths) until

 a started service has to connect

 "auth_timeout" : milliseconds (thousandths) a

 connection is given to Page 12/23

 authenticate

 "pending_fd_timeout" : milliseconds (thousandths) a

 fd is given to be transmitted to

 dbus-daemon before disconnecting the

 connection

 "max_completed_connections" : max number of authenticated connections

 "max_incomplete_connections" : max number of unauthenticated

 connections

 "max_connections_per_user" : max number of completed connections from

 the same user

 "max_pending_service_starts" : max number of service launches in

 progress at the same time

 "max_names_per_connection" : max number of names a single

 connection can own

 "max_match_rules_per_connection": max number of match rules for a single

 connection

 "max_replies_per_connection" : max number of pending method

 replies per connection

 (number of calls-in-progress)

 "reply_timeout" : milliseconds (thousandths)

 until a method call times out

 The max incoming/outgoing queue sizes allow a new message to be queued

 if one byte remains below the max. So you can in fact exceed the max by

 max_message_size.

 max_completed_connections divided by max_connections_per_user is the

 number of users that can work together to denial-of-service all other

 users by using up all connections on the systemwide bus.

 Limits are normally only of interest on the systemwide bus, not the

 user session buses.

 ? <policy>

 The <policy> element defines a security policy to be applied to a

 particular set of connections to the bus. A policy is made up of

 <allow> and <deny> elements. Policies are normally used with the Page 13/23

 systemwide bus; they are analogous to a firewall in that they allow

 expected traffic and prevent unexpected traffic.

 Currently, the system bus has a default-deny policy for sending method

 calls and owning bus names, and a default-allow policy for receiving

 messages, sending signals, and sending a single success or error reply

 for each method call that does not have the NO_REPLY flag. Sending more

 than the expected number of replies is not allowed.

 In general, it is best to keep system services as small, targeted

 programs which run in their own process and provide a single bus name.

 Then, all that is needed is an <allow> rule for the "own" permission to

 let the process claim the bus name, and a "send_destination" rule to

 allow traffic from some or all uids to your service.

 The <policy> element has one of four attributes:

 context="(default|mandatory)"

 at_console="(true|false)"

 user="username or userid"

 group="group name or gid"

 Policies are applied to a connection as follows:

 - all context="default" policies are applied

 - all group="connection's user's group" policies are applied

 in undefined order

 - all user="connection's auth user" policies are applied

 in undefined order

 - all at_console="true" policies are applied

 - all at_console="false" policies are applied

 - all context="mandatory" policies are applied

 Policies applied later will override those applied earlier, when the

 policies overlap. Multiple policies with the same user/group/context

 are applied in the order they appear in the config file.

 <deny>

 <allow>

 A <deny> element appears below a <policy> element and prohibits some

 action. The <allow> element makes an exception to previous <deny> Page 14/23

 statements, and works just like <deny> but with the inverse meaning.

 The possible attributes of these elements are:

 send_interface="interface_name" | "*"

 send_member="method_or_signal_name" | "*"

 send_error="error_name" | "*"

 send_broadcast="true" | "false"

 send_destination="name" | "*"

 send_type="method_call" | "method_return" | "signal" | "error" | "*"

 send_path="/path/name" | "*"

 receive_interface="interface_name" | "*"

 receive_member="method_or_signal_name" | "*"

 receive_error="error_name" | "*"

 receive_sender="name" | "*"

 receive_type="method_call" | "method_return" | "signal" | "error" | "*"

 receive_path="/path/name" | "*"

 send_requested_reply="true" | "false"

 receive_requested_reply="true" | "false"

 eavesdrop="true" | "false"

 own="name" | "*"

 own_prefix="name"

 user="username" | "*"

 group="groupname" | "*"

 Examples:

 <deny send_destination="org.freedesktop.Service" send_interface="org.freedesktop.System"

send_member="Reboot"/>

 <deny send_destination="org.freedesktop.System"/>

 <deny receive_sender="org.freedesktop.System"/>

 <deny user="john"/>

 <deny group="enemies"/>

 The <deny> element's attributes determine whether the deny "matches" a

 particular action. If it matches, the action is denied (unless later

 rules in the config file allow it).

 Rules with one or more of the send_* family of attributes are checked Page 15/23

 in order when a connection attempts to send a message. The last rule

 that matches the message determines whether it may be sent. The

 well-known session bus normally allows sending any message. The

 well-known system bus normally allows sending any signal, selected

 method calls to the dbus-daemon, and exactly one reply to each

 previously-sent method call (either success or an error). Either of

 these can be overridden by configuration; on the system bus, services

 that will receive method calls must install configuration that allows

 them to do so, usually via rules of the form <policy

 context="default"><allow send_destination="..."/><policy>.

 Rules with one or more of the receive_* family of attributes, or with

 the eavesdrop attribute and no others, are checked for each recipient

 of a message (there might be more than one recipient if the message is

 a broadcast or a connection is eavesdropping). The last rule that

 matches the message determines whether it may be received. The

 well-known session bus normally allows receiving any message, including

 eavesdropping. The well-known system bus normally allows receiving any

 message that was not eavesdropped (any unicast message addressed to the

 recipient, and any broadcast message).

 The eavesdrop, min_fds and max_fds attributes are modifiers that can be

 applied to either send_* or receive_* rules, and are documented below.

 send_destination and receive_sender rules mean that messages may not be

 sent to or received from the *owner* of the given name, not that they

 may not be sent *to that name*. That is, if a connection owns services

 A, B, C, and sending to A is denied, sending to B or C will not work

 either. As a special case, send_destination="*" matches any message

 (whether it has a destination specified or not), and receive_sender="*"

 similarly matches any message.

 Rules with send_broadcast="true" match signal messages with no

 destination (broadcasts). Rules with send_broadcast="false" are the

 inverse: they match any unicast destination (unicast signals, together

 with all method calls, replies and errors) but do not match messages

 with no destination (broadcasts). This is not the same as Page 16/23

 send_destination="*", which matches any sent message, regardless of

 whether it has a destination or not.

 The other send_* and receive_* attributes are purely textual/by-value

 matches against the given field in the message header, except that for

 the attributes where it is allowed, * matches any message (whether it

 has the relevant header field or not). For example, send_interface="*"

 matches any sent message, even if it does not contain an interface

 header field. More complex glob matching such as foo.bar.* is not

 allowed.

 "Eavesdropping" occurs when an application receives a message that was

 explicitly addressed to a name the application does not own, or is a

 reply to such a message. Eavesdropping thus only applies to messages

 that are addressed to services and replies to such messages (i.e. it

 does not apply to signals).

 For <allow>, eavesdrop="true" indicates that the rule matches even when

 eavesdropping. eavesdrop="false" is the default and means that the rule

 only allows messages to go to their specified recipient. For <deny>,

 eavesdrop="true" indicates that the rule matches only when

 eavesdropping. eavesdrop="false" is the default for <deny> also, but

 here it means that the rule applies always, even when not

 eavesdropping. The eavesdrop attribute can only be combined with send

 and receive rules (with send_* and receive_* attributes).

 The [send|receive]_requested_reply attribute works similarly to the

 eavesdrop attribute. It controls whether the <deny> or <allow> matches

 a reply that is expected (corresponds to a previous method call

 message). This attribute only makes sense for reply messages (errors

 and method returns), and is ignored for other message types.

 For <allow>, [send|receive]_requested_reply="true" is the default and

 indicates that only requested replies are allowed by the rule.

 [send|receive]_requested_reply="false" means that the rule allows any

 reply even if unexpected.

 For <deny>, [send|receive]_requested_reply="false" is the default but

 indicates that the rule matches only when the reply was not requested. Page 17/23

 [send|receive]_requested_reply="true" indicates that the rule applies

 always, regardless of pending reply state.

 The min_fds and max_fds attributes modify either send_* or receive_*

 rules. A rule with the min_fds attribute only matches messages if they

 have at least that many Unix file descriptors attached. Conversely, a

 rule with the max_fds attribute only matches messages if they have no

 more than that many file descriptors attached. In practice, rules with

 these attributes will most commonly take the form <allow

 send_destination="..." max_fds="0"/>, <deny send_destination="..."

 min_fds="1"/> or <deny receive_sender="*" min_fds="1"/>.

 Rules with the user or group attribute are checked when a new

 connection to the message bus is established, and control whether the

 connection can continue. Each of these attributes cannot be combined

 with any other attribute. As a special case, both user="*" and

 group="*" match any connection. If there are no rules of this form, the

 default is to allow connections from the same user ID that owns the

 dbus-daemon process. The well-known session bus normally uses that

 default behaviour, while the well-known system bus normally allows any

 connection.

 Rules with the own or own_prefix attribute are checked when a

 connection attempts to own a well-known bus names. As a special case,

 own="*" matches any well-known bus name. The well-known session bus

 normally allows any connection to own any name, while the well-known

 system bus normally does not allow any connection to own any name,

 except where allowed by further configuration. System services that

 will own a name must install configuration that allows them to do so,

 usually via rules of the form <policy user="some-system-user"><allow

 own="..."/></policy>.

 <allow own_prefix="a.b"/> allows you to own the name "a.b" or any name

 whose first dot-separated elements are "a.b": in particular, you can

 own "a.b.c" or "a.b.c.d", but not "a.bc" or "a.c". This is useful when

 services like Telepathy and ReserveDevice define a meaning for subtrees

 of well-known names, such as Page 18/23

 org.freedesktop.Telepathy.ConnectionManager.(anything) and

 org.freedesktop.ReserveDevice1.(anything).

 It does not make sense to deny a user or group inside a <policy> for a

 user or group; user/group denials can only be inside context="default"

 or context="mandatory" policies.

 A single <deny> rule may specify combinations of attributes such as

 send_destination and send_interface and send_type. In this case, the

 denial applies only if both attributes match the message being denied.

 e.g. <deny send_interface="foo.bar" send_destination="foo.blah"/> would

 deny messages with the given interface AND the given bus name. To get

 an OR effect you specify multiple <deny> rules.

 You can't include both send_ and receive_ attributes on the same rule,

 since "whether the message can be sent" and "whether it can be

 received" are evaluated separately.

 Be careful with send_interface/receive_interface, because the interface

 field in messages is optional. In particular, do NOT specify <deny

 send_interface="org.foo.Bar"/>! This will cause no-interface messages

 to be blocked for all services, which is almost certainly not what you

 intended. Always use rules of the form: <deny

 send_interface="org.foo.Bar" send_destination="org.foo.Service"/>

 ? <selinux>

 The <selinux> element contains settings related to Security Enhanced

 Linux. More details below.

 ? <associate>

 An <associate> element appears below an <selinux> element and creates a

 mapping. Right now only one kind of association is possible:

 <associate own="org.freedesktop.Foobar" context="foo_t"/>

 This means that if a connection asks to own the name

 "org.freedesktop.Foobar" then the source context will be the context of

 the connection and the target context will be "foo_t" - see the short

 discussion of SELinux below.

 Note, the context here is the target context when requesting a name,

 NOT the context of the connection owning the name. Page 19/23

 There's currently no way to set a default for owning any name, if we

 add this syntax it will look like:

 <associate own="*" context="foo_t"/>

 If you find a reason this is useful, let the developers know. Right now

 the default will be the security context of the bus itself.

 If two <associate> elements specify the same name, the element

 appearing later in the configuration file will be used.

 ? <apparmor>

 The <apparmor> element is used to configure AppArmor mediation on the

 bus. It can contain one attribute that specifies the mediation mode:

 <apparmor mode="(enabled|disabled|required)"/>

 The default mode is "enabled". In "enabled" mode, AppArmor mediation

 will be performed if AppArmor support is available in the kernel. If it

 is not available, dbus-daemon will start but AppArmor mediation will

 not occur. In "disabled" mode, AppArmor mediation is disabled. In

 "required" mode, AppArmor mediation will be enabled if AppArmor support

 is available, otherwise dbus-daemon will refuse to start.

 The AppArmor mediation mode of the bus cannot be changed after the bus

 starts. Modifying the mode in the configuration file and sending a

 SIGHUP signal to the daemon has no effect on the mediation mode.

SELINUX

 See http://www.nsa.gov/selinux/ for full details on SELinux. Some

 useful excerpts:

 Every subject (process) and object (e.g. file, socket, IPC object, etc)

 in the system is assigned a collection of security attributes, known as

 a security context. A security context contains all of the security

 attributes associated with a particular subject or object that are

 relevant to the security policy.

 In order to better encapsulate security contexts and to provide greater

 efficiency, the policy enforcement code of SELinux typically handles

 security identifiers (SIDs) rather than security contexts. A SID is an

 integer that is mapped by the security server to a security context at

 runtime. Page 20/23

 When a security decision is required, the policy enforcement code

 passes a pair of SIDs (typically the SID of a subject and the SID of an

 object, but sometimes a pair of subject SIDs or a pair of object SIDs),

 and an object security class to the security server. The object

 security class indicates the kind of object, e.g. a process, a regular

 file, a directory, a TCP socket, etc.

 Access decisions specify whether or not a permission is granted for a

 given pair of SIDs and class. Each object class has a set of associated

 permissions defined to control operations on objects with that class.

 D-Bus performs SELinux security checks in two places.

 First, any time a message is routed from one connection to another

 connection, the bus daemon will check permissions with the security

 context of the first connection as source, security context of the

 second connection as target, object class "dbus" and requested

 permission "send_msg".

 If a security context is not available for a connection (impossible

 when using UNIX domain sockets), then the target context used is the

 context of the bus daemon itself. There is currently no way to change

 this default, because we're assuming that only UNIX domain sockets will

 be used to connect to the systemwide bus. If this changes, we'll

 probably add a way to set the default connection context.

 Second, any time a connection asks to own a name, the bus daemon will

 check permissions with the security context of the connection as

 source, the security context specified for the name in the config file

 as target, object class "dbus" and requested permission "acquire_svc".

 The security context for a bus name is specified with the <associate>

 element described earlier in this document. If a name has no security

 context associated in the configuration file, the security context of

 the bus daemon itself will be used.

APPARMOR

 The AppArmor confinement context is stored when applications connect to

 the bus. The confinement context consists of a label and a confinement

 mode. When a security decision is required, the daemon uses the Page 21/23

 confinement context to query the AppArmor policy to determine if the

 action should be allowed or denied and if the action should be audited.

 The daemon performs AppArmor security checks in three places.

 First, any time a message is routed from one connection to another

 connection, the bus daemon will check permissions with the label of the

 first connection as source, label and/or connection name of the second

 connection as target, along with the bus name, the path name, the

 interface name, and the member name. Reply messages, such as

 method_return and error messages, are implicitly allowed if they are in

 response to a message that has already been allowed.

 Second, any time a connection asks to own a name, the bus daemon will

 check permissions with the label of the connection as source, the

 requested name as target, along with the bus name.

 Third, any time a connection attempts to eavesdrop, the bus daemon will

 check permissions with the label of the connection as the source, along

 with the bus name.

 AppArmor rules for bus mediation are not stored in the bus

 configuration files. They are stored in the application's AppArmor

 profile. Please see apparmor.d(5) for more details.

DEBUGGING

 If you're trying to figure out where your messages are going or why you

 aren't getting messages, there are several things you can try.

 Remember that the system bus is heavily locked down and if you haven't

 installed a security policy file to allow your message through, it

 won't work. For the session bus, this is not a concern.

 The simplest way to figure out what's happening on the bus is to run

 the dbus-monitor program, which comes with the D-Bus package. You can

 also send test messages with dbus-send. These programs have their own

 man pages.

 If you want to know what the daemon itself is doing, you might consider

 running a separate copy of the daemon to test against. This will allow

 you to put the daemon under a debugger, or run it with verbose output,

 without messing up your real session and system daemons. Page 22/23

 To run a separate test copy of the daemon, for example you might open a

 terminal and type:

 DBUS_VERBOSE=1 dbus-daemon --session --print-address

 The test daemon address will be printed when the daemon starts. You

 will need to copy-and-paste this address and use it as the value of the

 DBUS_SESSION_BUS_ADDRESS environment variable when you launch the

 applications you want to test. This will cause those applications to

 connect to your test bus instead of the DBUS_SESSION_BUS_ADDRESS of

 your real session bus.

 DBUS_VERBOSE=1 will have NO EFFECT unless your copy of D-Bus was

 compiled with verbose mode enabled. This is not recommended in

 production builds due to performance impact. You may need to rebuild

 D-Bus if your copy was not built with debugging in mind. (DBUS_VERBOSE

 also affects the D-Bus library and thus applications using D-Bus; it

 may be useful to see verbose output on both the client side and from

 the daemon.)

 If you want to get fancy, you can create a custom bus configuration for

 your test bus (see the session.conf and system.conf files that define

 the two default configurations for example). This would allow you to

 specify a different directory for .service files, for example.

AUTHOR

 See http://www.freedesktop.org/software/dbus/doc/AUTHORS

BUGS

 Please send bug reports to the D-Bus mailing list or bug tracker, see

 http://www.freedesktop.org/software/dbus/

NOTES

 1. relay connections via Secure Shell or a similar protocol

 https://lists.freedesktop.org/archives/dbus/2018-April/017447.html

D-Bus 1.12.20 06/12/2023 DBUS-DAEMON(1)

Page 23/23

