
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'daemon.7' command

$ man daemon.7

DAEMON(7) daemon DAEMON(7)

NAME

 daemon - Writing and packaging system daemons

DESCRIPTION

 A daemon is a service process that runs in the background and

 supervises the system or provides functionality to other processes.

 Traditionally, daemons are implemented following a scheme originating

 in SysV Unix. Modern daemons should follow a simpler yet more powerful

 scheme (here called "new-style" daemons), as implemented by systemd(1).

 This manual page covers both schemes, and in particular includes

 recommendations for daemons that shall be included in the systemd init

 system.

 SysV Daemons

 When a traditional SysV daemon starts, it should execute the following

 steps as part of the initialization. Note that these steps are

 unnecessary for new-style daemons (see below), and should only be

 implemented if compatibility with SysV is essential.

 1. Close all open file descriptors except standard input, output, and

 error (i.e. the first three file descriptors 0, 1, 2). This ensures

 that no accidentally passed file descriptor stays around in the

 daemon process. On Linux, this is best implemented by iterating

 through /proc/self/fd, with a fallback of iterating from file

 descriptor 3 to the value returned by getrlimit() for Page 1/14

 RLIMIT_NOFILE.

 2. Reset all signal handlers to their default. This is best done by

 iterating through the available signals up to the limit of _NSIG

 and resetting them to SIG_DFL.

 3. Reset the signal mask using sigprocmask().

 4. Sanitize the environment block, removing or resetting environment

 variables that might negatively impact daemon runtime.

 5. Call fork(), to create a background process.

 6. In the child, call setsid() to detach from any terminal and create

 an independent session.

 7. In the child, call fork() again, to ensure that the daemon can

 never re-acquire a terminal again. (This relevant if the program ?

 and all its dependencies ? does not carefully specify `O_NOCTTY` on

 each and every single `open()` call that might potentially open a

 TTY device node.)

 8. Call exit() in the first child, so that only the second child (the

 actual daemon process) stays around. This ensures that the daemon

 process is re-parented to init/PID 1, as all daemons should be.

 9. In the daemon process, connect /dev/null to standard input, output,

 and error.

 10. In the daemon process, reset the umask to 0, so that the file modes

 passed to open(), mkdir() and suchlike directly control the access

 mode of the created files and directories.

 11. In the daemon process, change the current directory to the root

 directory (/), in order to avoid that the daemon involuntarily

 blocks mount points from being unmounted.

 12. In the daemon process, write the daemon PID (as returned by

 getpid()) to a PID file, for example /run/foobar.pid (for a

 hypothetical daemon "foobar") to ensure that the daemon cannot be

 started more than once. This must be implemented in race-free

 fashion so that the PID file is only updated when it is verified at

 the same time that the PID previously stored in the PID file no

 longer exists or belongs to a foreign process. Page 2/14

 13. In the daemon process, drop privileges, if possible and applicable.

 14. From the daemon process, notify the original process started that

 initialization is complete. This can be implemented via an unnamed

 pipe or similar communication channel that is created before the

 first fork() and hence available in both the original and the

 daemon process.

 15. Call exit() in the original process. The process that invoked the

 daemon must be able to rely on that this exit() happens after

 initialization is complete and all external communication channels

 are established and accessible.

 The BSD daemon() function should not be used, as it implements only a

 subset of these steps.

 A daemon that needs to provide compatibility with SysV systems should

 implement the scheme pointed out above. However, it is recommended to

 make this behavior optional and configurable via a command line

 argument to ease debugging as well as to simplify integration into

 systems using systemd.

 New-Style Daemons

 Modern services for Linux should be implemented as new-style daemons.

 This makes it easier to supervise and control them at runtime and

 simplifies their implementation.

 For developing a new-style daemon, none of the initialization steps

 recommended for SysV daemons need to be implemented. New-style init

 systems such as systemd make all of them redundant. Moreover, since

 some of these steps interfere with process monitoring, file descriptor

 passing and other functionality of the init system, it is recommended

 not to execute them when run as new-style service.

 Note that new-style init systems guarantee execution of daemon

 processes in a clean process context: it is guaranteed that the

 environment block is sanitized, that the signal handlers and mask is

 reset and that no left-over file descriptors are passed. Daemons will

 be executed in their own session, with standard input connected to

 /dev/null and standard output/error connected to the systemd- Page 3/14

 journald.service(8) logging service, unless otherwise configured. The

 umask is reset.

 It is recommended for new-style daemons to implement the following:

 1. If SIGTERM is received, shut down the daemon and exit cleanly.

 2. If SIGHUP is received, reload the configuration files, if this

 applies.

 3. Provide a correct exit code from the main daemon process, as this

 is used by the init system to detect service errors and problems.

 It is recommended to follow the exit code scheme as defined in the

 LSB recommendations for SysV init scripts[1].

 4. If possible and applicable, expose the daemon's control interface

 via the D-Bus IPC system and grab a bus name as last step of

 initialization.

 5. For integration in systemd, provide a .service unit file that

 carries information about starting, stopping and otherwise

 maintaining the daemon. See systemd.service(5) for details.

 6. As much as possible, rely on the init system's functionality to

 limit the access of the daemon to files, services and other

 resources, i.e. in the case of systemd, rely on systemd's resource

 limit control instead of implementing your own, rely on systemd's

 privilege dropping code instead of implementing it in the daemon,

 and similar. See systemd.exec(5) for the available controls.

 7. If D-Bus is used, make your daemon bus-activatable by supplying a

 D-Bus service activation configuration file. This has multiple

 advantages: your daemon may be started lazily on-demand; it may be

 started in parallel to other daemons requiring it ? which maximizes

 parallelization and boot-up speed; your daemon can be restarted on

 failure without losing any bus requests, as the bus queues requests

 for activatable services. See below for details.

 8. If your daemon provides services to other local processes or remote

 clients via a socket, it should be made socket-activatable

 following the scheme pointed out below. Like D-Bus activation, this

 enables on-demand starting of services as well as it allows Page 4/14

 improved parallelization of service start-up. Also, for state-less

 protocols (such as syslog, DNS), a daemon implementing socket-based

 activation can be restarted without losing a single request. See

 below for details.

 9. If applicable, a daemon should notify the init system about startup

 completion or status updates via the sd_notify(3) interface.

 10. Instead of using the syslog() call to log directly to the system

 syslog service, a new-style daemon may choose to simply log to

 standard error via fprintf(), which is then forwarded to syslog by

 the init system. If log levels are necessary, these can be encoded

 by prefixing individual log lines with strings like "<4>" (for log

 level 4 "WARNING" in the syslog priority scheme), following a

 similar style as the Linux kernel's printk() level system. For

 details, see sd-daemon(3) and systemd.exec(5).

 11. As new-style daemons are invoked without a controlling TTY (but as

 their own session leaders) care should be taken to always specify

 `O_NOCTTY` on `open()` calls that possibly reference a TTY device

 node, so that no controlling TTY is accidentally acquired.

 These recommendations are similar but not identical to the Apple MacOS

 X Daemon Requirements[2].

ACTIVATION

 New-style init systems provide multiple additional mechanisms to

 activate services, as detailed below. It is common that services are

 configured to be activated via more than one mechanism at the same

 time. An example for systemd: bluetoothd.service might get activated

 either when Bluetooth hardware is plugged in, or when an application

 accesses its programming interfaces via D-Bus. Or, a print server

 daemon might get activated when traffic arrives at an IPP port, or when

 a printer is plugged in, or when a file is queued in the printer spool

 directory. Even for services that are intended to be started on system

 bootup unconditionally, it is a good idea to implement some of the

 various activation schemes outlined below, in order to maximize

 parallelization. If a daemon implements a D-Bus service or listening Page 5/14

 socket, implementing the full bus and socket activation scheme allows

 starting of the daemon with its clients in parallel (which speeds up

 boot-up), since all its communication channels are established already,

 and no request is lost because client requests will be queued by the

 bus system (in case of D-Bus) or the kernel (in case of sockets) until

 the activation is completed.

 Activation on Boot

 Old-style daemons are usually activated exclusively on boot (and

 manually by the administrator) via SysV init scripts, as detailed in

 the LSB Linux Standard Base Core Specification[1]. This method of

 activation is supported ubiquitously on Linux init systems, both

 old-style and new-style systems. Among other issues, SysV init scripts

 have the disadvantage of involving shell scripts in the boot process.

 New-style init systems generally employ updated versions of activation,

 both during boot-up and during runtime and using more minimal service

 description files.

 In systemd, if the developer or administrator wants to make sure that a

 service or other unit is activated automatically on boot, it is

 recommended to place a symlink to the unit file in the .wants/

 directory of either multi-user.target or graphical.target, which are

 normally used as boot targets at system startup. See systemd.unit(5)

 for details about the .wants/ directories, and systemd.special(7) for

 details about the two boot targets.

 Socket-Based Activation

 In order to maximize the possible parallelization and robustness and

 simplify configuration and development, it is recommended for all

 new-style daemons that communicate via listening sockets to employ

 socket-based activation. In a socket-based activation scheme, the

 creation and binding of the listening socket as primary communication

 channel of daemons to local (and sometimes remote) clients is moved out

 of the daemon code and into the init system. Based on per-daemon

 configuration, the init system installs the sockets and then hands them

 off to the spawned process as soon as the respective daemon is to be Page 6/14

 started. Optionally, activation of the service can be delayed until the

 first inbound traffic arrives at the socket to implement on-demand

 activation of daemons. However, the primary advantage of this scheme is

 that all providers and all consumers of the sockets can be started in

 parallel as soon as all sockets are established. In addition to that,

 daemons can be restarted with losing only a minimal number of client

 transactions, or even any client request at all (the latter is

 particularly true for state-less protocols, such as DNS or syslog),

 because the socket stays bound and accessible during the restart, and

 all requests are queued while the daemon cannot process them.

 New-style daemons which support socket activation must be able to

 receive their sockets from the init system instead of creating and

 binding them themselves. For details about the programming interfaces

 for this scheme provided by systemd, see sd_listen_fds(3) and sd-

 daemon(3). For details about porting existing daemons to socket-based

 activation, see below. With minimal effort, it is possible to implement

 socket-based activation in addition to traditional internal socket

 creation in the same codebase in order to support both new-style and

 old-style init systems from the same daemon binary.

 systemd implements socket-based activation via .socket units, which are

 described in systemd.socket(5). When configuring socket units for

 socket-based activation, it is essential that all listening sockets are

 pulled in by the special target unit sockets.target. It is recommended

 to place a WantedBy=sockets.target directive in the [Install] section

 to automatically add such a dependency on installation of a socket

 unit. Unless DefaultDependencies=no is set, the necessary ordering

 dependencies are implicitly created for all socket units. For more

 information about sockets.target, see systemd.special(7). It is not

 necessary or recommended to place any additional dependencies on socket

 units (for example from multi-user.target or suchlike) when one is

 installed in sockets.target.

 Bus-Based Activation

 When the D-Bus IPC system is used for communication with clients, Page 7/14

 new-style daemons should employ bus activation so that they are

 automatically activated when a client application accesses their IPC

 interfaces. This is configured in D-Bus service files (not to be

 confused with systemd service unit files!). To ensure that D-Bus uses

 systemd to start-up and maintain the daemon, use the SystemdService=

 directive in these service files to configure the matching systemd

 service for a D-Bus service. e.g.: For a D-Bus service whose D-Bus

 activation file is named org.freedesktop.RealtimeKit.service, make sure

 to set SystemdService=rtkit-daemon.service in that file to bind it to

 the systemd service rtkit-daemon.service. This is needed to make sure

 that the daemon is started in a race-free fashion when activated via

 multiple mechanisms simultaneously.

 Device-Based Activation

 Often, daemons that manage a particular type of hardware should be

 activated only when the hardware of the respective kind is plugged in

 or otherwise becomes available. In a new-style init system, it is

 possible to bind activation to hardware plug/unplug events. In systemd,

 kernel devices appearing in the sysfs/udev device tree can be exposed

 as units if they are tagged with the string "systemd". Like any other

 kind of unit, they may then pull in other units when activated (i.e.

 plugged in) and thus implement device-based activation. systemd

 dependencies may be encoded in the udev database via the SYSTEMD_WANTS=

 property. See systemd.device(5) for details. Often, it is nicer to pull

 in services from devices only indirectly via dedicated targets.

 Example: Instead of pulling in bluetoothd.service from all the various

 bluetooth dongles and other hardware available, pull in

 bluetooth.target from them and bluetoothd.service from that target.

 This provides for nicer abstraction and gives administrators the option

 to enable bluetoothd.service via controlling a bluetooth.target.wants/

 symlink uniformly with a command like enable of systemctl(1) instead of

 manipulating the udev ruleset.

 Path-Based Activation

 Often, runtime of daemons processing spool files or directories (such Page 8/14

 as a printing system) can be delayed until these file system objects

 change state, or become non-empty. New-style init systems provide a way

 to bind service activation to file system changes. systemd implements

 this scheme via path-based activation configured in .path units, as

 outlined in systemd.path(5).

 Timer-Based Activation

 Some daemons that implement clean-up jobs that are intended to be

 executed in regular intervals benefit from timer-based activation. In

 systemd, this is implemented via .timer units, as described in

 systemd.timer(5).

 Other Forms of Activation

 Other forms of activation have been suggested and implemented in some

 systems. However, there are often simpler or better alternatives, or

 they can be put together of combinations of the schemes above. Example:

 Sometimes, it appears useful to start daemons or .socket units when a

 specific IP address is configured on a network interface, because

 network sockets shall be bound to the address. However, an alternative

 to implement this is by utilizing the Linux IP_FREEBIND/IPV6_FREEBIND

 socket option, as accessible via FreeBind=yes in systemd socket files

 (see systemd.socket(5) for details). This option, when enabled, allows

 sockets to be bound to a non-local, not configured IP address, and

 hence allows bindings to a particular IP address before it actually

 becomes available, making such an explicit dependency to the configured

 address redundant. Another often suggested trigger for service

 activation is low system load. However, here too, a more convincing

 approach might be to make proper use of features of the operating

 system, in particular, the CPU or I/O scheduler of Linux. Instead of

 scheduling jobs from userspace based on monitoring the OS scheduler, it

 is advisable to leave the scheduling of processes to the OS scheduler

 itself. systemd provides fine-grained access to the CPU and I/O

 schedulers. If a process executed by the init system shall not

 negatively impact the amount of CPU or I/O bandwidth available to other

 processes, it should be configured with CPUSchedulingPolicy=idle and/or Page 9/14

 IOSchedulingClass=idle. Optionally, this may be combined with

 timer-based activation to schedule background jobs during runtime and

 with minimal impact on the system, and remove it from the boot phase

 itself.

INTEGRATION WITH SYSTEMD

 Writing systemd Unit Files

 When writing systemd unit files, it is recommended to consider the

 following suggestions:

 1. If possible, do not use the Type=forking setting in service files.

 But if you do, make sure to set the PID file path using PIDFile=.

 See systemd.service(5) for details.

 2. If your daemon registers a D-Bus name on the bus, make sure to use

 Type=dbus in the service file if possible.

 3. Make sure to set a good human-readable description string with

 Description=.

 4. Do not disable DefaultDependencies=, unless you really know what

 you do and your unit is involved in early boot or late system

 shutdown.

 5. Normally, little if any dependencies should need to be defined

 explicitly. However, if you do configure explicit dependencies,

 only refer to unit names listed on systemd.special(7) or names

 introduced by your own package to keep the unit file operating

 system-independent.

 6. Make sure to include an [Install] section including installation

 information for the unit file. See systemd.unit(5) for details. To

 activate your service on boot, make sure to add a

 WantedBy=multi-user.target or WantedBy=graphical.target directive.

 To activate your socket on boot, make sure to add

 WantedBy=sockets.target. Usually, you also want to make sure that

 when your service is installed, your socket is installed too, hence

 add Also=foo.socket in your service file foo.service, for a

 hypothetical program foo.

 Installing systemd Service Files Page 10/14

 At the build installation time (e.g. make install during package

 build), packages are recommended to install their systemd unit files in

 the directory returned by pkg-config systemd

 --variable=systemdsystemunitdir (for system services) or pkg-config

 systemd --variable=systemduserunitdir (for user services). This will

 make the services available in the system on explicit request but not

 activate them automatically during boot. Optionally, during package

 installation (e.g. rpm -i by the administrator), symlinks should be

 created in the systemd configuration directories via the enable command

 of the systemctl(1) tool to activate them automatically on boot.

 Packages using autoconf(1) are recommended to use a configure script

 excerpt like the following to determine the unit installation path

 during source configuration:

 PKG_PROG_PKG_CONFIG

 AC_ARG_WITH([systemdsystemunitdir],

 [AS_HELP_STRING([--with-systemdsystemunitdir=DIR], [Directory for systemd service files])],,

 [with_systemdsystemunitdir=auto])

 AS_IF([test "x$with_systemdsystemunitdir" = "xyes" -o "x$with_systemdsystemunitdir" = "xauto"], [

 def_systemdsystemunitdir=$($PKG_CONFIG --variable=systemdsystemunitdir systemd)

 AS_IF([test "x$def_systemdsystemunitdir" = "x"],

 [AS_IF([test "x$with_systemdsystemunitdir" = "xyes"],

 [AC_MSG_ERROR([systemd support requested but pkg-config unable to query systemd package])])

 with_systemdsystemunitdir=no],

 [with_systemdsystemunitdir="$def_systemdsystemunitdir"])])

 AS_IF([test "x$with_systemdsystemunitdir" != "xno"],

 [AC_SUBST([systemdsystemunitdir], [$with_systemdsystemunitdir])])

 AM_CONDITIONAL([HAVE_SYSTEMD], [test "x$with_systemdsystemunitdir" != "xno"])

 This snippet allows automatic installation of the unit files on systemd

 machines, and optionally allows their installation even on machines

 lacking systemd. (Modification of this snippet for the user unit

 directory is left as an exercise for the reader.)

 Additionally, to ensure that make distcheck continues to work, it is

 recommended to add the following to the top-level Makefile.am file in Page 11/14

 automake(1)-based projects:

 AM_DISTCHECK_CONFIGURE_FLAGS = \

 --with-systemdsystemunitdir=$$dc_install_base/$(systemdsystemunitdir)

 Finally, unit files should be installed in the system with an automake

 excerpt like the following:

 if HAVE_SYSTEMD

 systemdsystemunit_DATA = \

 foobar.socket \

 foobar.service

 endif

 In the rpm(8) .spec file, use snippets like the following to

 enable/disable the service during installation/deinstallation. This

 makes use of the RPM macros shipped along systemd. Consult the

 packaging guidelines of your distribution for details and the

 equivalent for other package managers.

 At the top of the file:

 BuildRequires: systemd

 %{?systemd_requires}

 And as scriptlets, further down:

 %post

 %systemd_post foobar.service foobar.socket

 %preun

 %systemd_preun foobar.service foobar.socket

 %postun

 %systemd_postun

 If the service shall be restarted during upgrades, replace the

 "%postun" scriptlet above with the following:

 %postun

 %systemd_postun_with_restart foobar.service

 Note that "%systemd_post" and "%systemd_preun" expect the names of all

 units that are installed/removed as arguments, separated by spaces.

 "%systemd_postun" expects no arguments. "%systemd_postun_with_restart"

 expects the units to restart as arguments. Page 12/14

 To facilitate upgrades from a package version that shipped only SysV

 init scripts to a package version that ships both a SysV init script

 and a native systemd service file, use a fragment like the following:

 %triggerun -- foobar < 0.47.11-1

 if /sbin/chkconfig --level 5 foobar ; then

 /bin/systemctl --no-reload enable foobar.service foobar.socket >/dev/null 2>&1 || :

 fi

 Where 0.47.11-1 is the first package version that includes the native

 unit file. This fragment will ensure that the first time the unit file

 is installed, it will be enabled if and only if the SysV init script is

 enabled, thus making sure that the enable status is not changed. Note

 that chkconfig is a command specific to Fedora which can be used to

 check whether a SysV init script is enabled. Other operating systems

 will have to use different commands here.

PORTING EXISTING DAEMONS

 Since new-style init systems such as systemd are compatible with

 traditional SysV init systems, it is not strictly necessary to port

 existing daemons to the new style. However, doing so offers additional

 functionality to the daemons as well as simplifying integration into

 new-style init systems.

 To port an existing SysV compatible daemon, the following steps are

 recommended:

 1. If not already implemented, add an optional command line switch to

 the daemon to disable daemonization. This is useful not only for

 using the daemon in new-style init systems, but also to ease

 debugging.

 2. If the daemon offers interfaces to other software running on the

 local system via local AF_UNIX sockets, consider implementing

 socket-based activation (see above). Usually, a minimal patch is

 sufficient to implement this: Extend the socket creation in the

 daemon code so that sd_listen_fds(3) is checked for already passed

 sockets first. If sockets are passed (i.e. when sd_listen_fds()

 returns a positive value), skip the socket creation step and use Page 13/14

 the passed sockets. Secondly, ensure that the file system socket

 nodes for local AF_UNIX sockets used in the socket-based activation

 are not removed when the daemon shuts down, if sockets have been

 passed. Third, if the daemon normally closes all remaining open

 file descriptors as part of its initialization, the sockets passed

 from the init system must be spared. Since new-style init systems

 guarantee that no left-over file descriptors are passed to executed

 processes, it might be a good choice to simply skip the closing of

 all remaining open file descriptors if sockets are passed.

 3. Write and install a systemd unit file for the service (and the

 sockets if socket-based activation is used, as well as a path unit

 file, if the daemon processes a spool directory), see above for

 details.

 4. If the daemon exposes interfaces via D-Bus, write and install a

 D-Bus activation file for the service, see above for details.

PLACING DAEMON DATA

 It is recommended to follow the general guidelines for placing package

 files, as discussed in file-hierarchy(7).

SEE ALSO

 systemd(1), sd-daemon(3), sd_listen_fds(3), sd_notify(3), daemon(3),

 systemd.service(5), file-hierarchy(7)

NOTES

 1. LSB recommendations for SysV init scripts

 http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

 2. Apple MacOS X Daemon Requirements

https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJ

obs.html

systemd 252 DAEMON(7)

Page 14/14

