
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'cryptsetup.8' command

$ man cryptsetup.8

CRYPTSETUP(8) Maintenance Commands CRYPTSETUP(8)

NAME

 cryptsetup - manage plain dm-crypt, LUKS, and other encrypted volumes

SYNOPSIS

 cryptsetup <action> [<options>] <action args>

DESCRIPTION

 cryptsetup is used to conveniently setup dm-crypt managed device-mapper

 mappings. These include plain dm-crypt volumes and LUKS volumes. The

 difference is that LUKS uses a metadata header and can hence offer more

 features than plain dm-crypt. On the other hand, the header is visible

 and vulnerable to damage.

 In addition, cryptsetup provides limited support for the use of

 loop-AES volumes, TrueCrypt, VeraCrypt, BitLocker and FileVault2

 compatible volumes.

 For more information about specific cryptsetup action see

 cryptsetup-<action>(8), where <action> is the name of the cryptsetup

 action.

BASIC ACTIONS

 The following are valid actions for all supported device types.

 OPEN

 open <device> <name> --type <device_type>

 Opens (creates a mapping with) <name> backed by device <device>.

 See cryptsetup-open(8). Page 1/18

 CLOSE

 close <name>

 Removes the existing mapping <name> and wipes the key from kernel

 memory.

 See cryptsetup-close(8).

 STATUS

 status <name>

 Reports the status for the mapping <name>.

 See cryptsetup-status(8).

 RESIZE

 resize <name>

 Resizes an active mapping <name>.

 See cryptsetup-resize(8).

 REFRESH

 refresh <name>

 Refreshes parameters of active mapping <name>.

 See cryptsetup-refresh(8).

 REENCRYPT

 reencrypt <device> or --active-name <name> [<new_name>]

 Run LUKS device reencryption.

 See cryptsetup-reencrypt(8).

PLAIN MODE

 Plain dm-crypt encrypts the device sector-by-sector with a single,

 non-salted hash of the passphrase. No checks are performed, no metadata

 is used. There is no formatting operation. When the raw device is

 mapped (opened), the usual device operations can be used on the mapped

 device, including filesystem creation. Mapped devices usually reside in

 /dev/mapper/<name>.

 The following are valid plain device type actions:

 OPEN

 open --type plain <device> <name>

 create <name> <device> (OBSOLETE syntax)

 Opens (creates a mapping with) <name> backed by device <device>. Page 2/18

 See cryptsetup-open(8).

LUKS EXTENSION

 LUKS, the Linux Unified Key Setup, is a standard for disk encryption.

 It adds a standardized header at the start of the device, a key-slot

 area directly behind the header and the bulk data area behind that. The

 whole set is called a 'LUKS container'. The device that a LUKS

 container resides on is called a 'LUKS device'. For most purposes, both

 terms can be used interchangeably. But note that when the LUKS header

 is at a nonzero offset in a device, then the device is not a LUKS

 device anymore, but has a LUKS container stored in it at an offset.

 LUKS can manage multiple passphrases that can be individually revoked

 or changed and that can be securely scrubbed from persistent media due

 to the use of anti-forensic stripes. Passphrases are protected against

 brute-force and dictionary attacks by Password-Based Key Derivation

 Function (PBKDF).

 LUKS2 is a new version of header format that allows additional

 extensions like different PBKDF algorithm or authenticated encryption.

 You can format device with LUKS2 header if you specify --type luks2 in

 luksFormat command. For activation, the format is already recognized

 automatically.

 Each passphrase, also called a key in this document, is associated with

 one of 8 key-slots. Key operations that do not specify a slot affect

 the first slot that matches the supplied passphrase or the first empty

 slot if a new passphrase is added.

 The <device> parameter can also be specified by a LUKS UUID in the

 format UUID=<uuid>. Translation to real device name uses symlinks in

 /dev/disk/by-uuid directory.

 To specify a detached header, the --header parameter can be used in all

 LUKS commands and always takes precedence over the positional <device>

 parameter.

 The following are valid LUKS actions:

 FORMAT

 luksFormat <device> [<key file>] Page 3/18

 Initializes a LUKS partition and sets the initial passphrase (for

 key-slot 0).

 See cryptsetup-luksFormat(8).

 OPEN

 open --type luks <device> <name>

 luksOpen <device> <name> (old syntax)

 Opens the LUKS device <device> and sets up a mapping <name> after

 successful verification of the supplied passphrase.

 See cryptsetup-open(8).

 SUSPEND

 luksSuspend <name>

 Suspends an active device (all IO operations will block and accesses to

 the device will wait indefinitely) and wipes the encryption key from

 kernel memory.

 See cryptsetup-luksSuspend(8).

 RESUME

 luksResume <name>

 Resumes a suspended device and reinstates the encryption key.

 See cryptsetup-luksResume(8).

 ADD KEY

 luksAddKey <device> [<key file with new key>]

 Adds a new passphrase using an existing passphrase.

 See cryptsetup-luksAddKey(8).

 REMOVE KEY

 luksRemoveKey <device> [<key file with passphrase to be removed>]

 Removes the supplied passphrase from the LUKS device.

 See cryptsetup-luksRemoveKey(8).

 CHANGE KEY

 luksChangeKey <device> [<new key file>]

 Changes an existing passphrase.

 See cryptsetup-luksChangeKey(8).

 CONVERT KEY

 luksConvertKey <device> Page 4/18

 Converts an existing LUKS2 keyslot to new PBKDF parameters.

 See cryptsetup-luksConvertKey(8).

 KILL SLOT

 luksKillSlot <device> <key slot number>

 Wipe the key-slot number <key slot> from the LUKS device.

 See cryptsetup-luksKillSlot(8).

 ERASE

 erase <device>

 luksErase <device> (old syntax)

 Erase all keyslots and make the LUKS container permanently

 inaccessible.

 See cryptsetup-erase(8).

 UUID

 luksUUID <device>

 Print or set the UUID of a LUKS device.

 See cryptsetup-luksUUID(8).

 IS LUKS

 isLuks <device>

 Returns true, if <device> is a LUKS device, false otherwise.

 See cryptsetup-isLuks(8).

 DUMP

 luksDump <device>

 Dump the header information of a LUKS device.

 See cryptsetup-luksDump(8).

 HEADER BACKUP

 luksHeaderBackup <device> --header-backup-file <file>

 Stores a binary backup of the LUKS header and keyslot area.

 See cryptsetup-luksHeaderBackup(8).

 HEADER RESTORE

 luksHeaderRestore <device> --header-backup-file <file>

 Restores a binary backup of the LUKS header and keyslot area from the

 specified file.

 See cryptsetup-luksHeaderRestore(8). Page 5/18

 TOKEN

 token <add|remove|import|export> <device>

 Manipulate token objects used for obtaining passphrases.

 See cryptsetup-token(8).

 CONVERT

 convert <device> --type <format>

 Converts the device between LUKS1 and LUKS2 format (if possible).

 See cryptsetup-convert(8).

 CONFIG

 config <device>

 Set permanent configuration options (store to LUKS header).

 See cryptsetup-config(8).

LOOP-AES EXTENSION

 cryptsetup supports mapping loop-AES encrypted partition using a

 compatibility mode.

 OPEN

 open --type loopaes <device> <name> --key-file <keyfile>

 loopaesOpen <device> <name> --key-file <keyfile> (old syntax)

 Opens the loop-AES <device> and sets up a mapping <name>.

 See cryptsetup-open(8).

 See also section 7 of the FAQ and loop-AES

 <http://loop-aes.sourceforge.net> for more information regarding

 loop-AES.

TCRYPT (TRUECRYPT AND VERACRYPT COMPATIBLE) EXTENSION

 cryptsetup supports mapping of TrueCrypt, tcplay or VeraCrypt encrypted

 partition using a native Linux kernel API. Header formatting and TCRYPT

 header change is not supported, cryptsetup never changes TCRYPT header

 on-device.

 TCRYPT extension requires kernel userspace crypto API to be available

 (introduced in Linux kernel 2.6.38). If you are configuring kernel

 yourself, enable "User-space interface for symmetric key cipher

 algorithms" in "Cryptographic API" section (CRYPTO_USER_API_SKCIPHER

 .config option). Page 6/18

 Because TCRYPT header is encrypted, you have to always provide valid

 passphrase and keyfiles.

 Cryptsetup should recognize all header variants, except legacy cipher

 chains using LRW encryption mode with 64 bits encryption block (namely

 Blowfish in LRW mode is not recognized, this is limitation of kernel

 crypto API).

 VeraCrypt is extension of TrueCrypt header with increased iteration

 count so unlocking can take quite a lot of time.

 To open a VeraCrypt device with a custom Personal Iteration Multiplier

 (PIM) value, use either the --veracrypt-pim=<PIM> option to directly

 specify the PIM on the command- line or use --veracrypt-query-pim to be

 prompted for the PIM.

 The PIM value affects the number of iterations applied during key

 derivation. Please refer to PIM

 <https://www.veracrypt.fr/en/Personal%20Iterations%20Multiplier%20%28PIM%29.html>

 for more detailed information.

 If you need to disable VeraCrypt device support, use

 --disable-veracrypt option.

 NOTE: Activation with tcryptOpen is supported only for cipher chains

 using LRW or XTS encryption modes.

 The tcryptDump command should work for all recognized TCRYPT devices

 and doesn?t require superuser privilege.

 To map system device (device with boot loader where the whole encrypted

 system resides) use --tcrypt-system option. You can use partition

 device as the parameter (parameter must be real partition device, not

 an image in a file), then only this partition is mapped.

 If you have the whole TCRYPT device as a file image and you want to map

 multiple partition encrypted with system encryption, please create

 loopback mapping with partitions first (losetup -P, see losetup(8) man

 page for more info), and use loop partition as the device parameter.

 If you use the whole base device as a parameter, one device for the

 whole system encryption is mapped. This mode is available only for

 backward compatibility with older cryptsetup versions which mapped Page 7/18

 TCRYPT system encryption using the whole device.

 To use hidden header (and map hidden device, if available), use

 --tcrypt-hidden option.

 To explicitly use backup (secondary) header, use --tcrypt-backup

 option.

 NOTE: There is no protection for a hidden volume if the outer volume is

 mounted. The reason is that if there were any protection, it would

 require some metadata describing what to protect in the outer volume

 and the hidden volume would become detectable.

 OPEN

 open --type tcrypt <device> <name>

 tcryptOpen_ <device> <name> (old syntax)

 Opens the TCRYPT (a TrueCrypt-compatible) <device> and sets up a

 mapping <name>.

 See cryptsetup-open(8).

 DUMP

 tcryptDump <device>

 Dump the header information of a TCRYPT device.

 See cryptsetup-tcryptDump(8).

 See also TrueCrypt <https://en.wikipedia.org/wiki/TrueCrypt> and

 VeraCrypt <https://en.wikipedia.org/wiki/VeraCrypt> pages for more

 information.

 Please note that cryptsetup does not use TrueCrypt or VeraCrypt code,

 please report all problems related to this compatibility extension to

 the cryptsetup project.

BITLK (WINDOWS BITLOCKER COMPATIBLE) EXTENSION

 cryptsetup supports mapping of BitLocker and BitLocker to Go encrypted

 partition using a native Linux kernel API. Header formatting and BITLK

 header changes are not supported, cryptsetup never changes BITLK header

 on-device.

 BITLK extension requires kernel userspace crypto API to be available

 (for details see TCRYPT section).

 Cryptsetup should recognize all BITLK header variants, except legacy Page 8/18

 header used in Windows Vista systems and partially decrypted BitLocker

 devices. Activation of legacy devices encrypted in CBC mode requires at

 least Linux kernel version 5.3 and for devices using Elephant diffuser

 kernel 5.6.

 The bitlkDump command should work for all recognized BITLK devices and

 doesn?t require superuser privilege.

 For unlocking with the open a password or a recovery passphrase or a

 startup key must be provided.

 Additionally unlocking using volume key is supported. You must provide

 BitLocker Full Volume Encryption Key (FVEK) using the --volume-key-file

 option. The key must be decrypted and without the header (only

 128/256/512 bits of key data depending on used cipher and mode).

 Other unlocking methods (TPM, SmartCard) are not supported.

 OPEN

 open --type bitlk <device> <name>

 bitlkOpen <device> <name> (old syntax)

 Opens the BITLK (a BitLocker-compatible) <device> and sets up a mapping

 <name>.

 See cryptsetup-open(8).

 DUMP

 bitlkDump <device>

 Dump the header information of a BITLK device.

 See cryptsetup-bitlkDump(8).

 Please note that cryptsetup does not use any Windows BitLocker code,

 please report all problems related to this compatibility extension to

 the cryptsetup project.

FVAULT2 (APPLE MACOS FILEVAULT2 COMPATIBLE) EXTENSION

 cryptsetup supports the mapping of FileVault2 (FileVault2 full-disk

 encryption) by Apple for the macOS operating system using a native

 Linux kernel API.

 NOTE: cryptsetup supports only FileVault2 based on Core Storage and

 HFS+ filesystem (introduced in MacOS X 10.7 Lion). It does NOT support

 the new version of FileVault based on the APFS filesystem used in Page 9/18

 recent macOS versions.

 Header formatting and FVAULT2 header changes are not supported;

 cryptsetup never changes the FVAULT2 header on-device.

 FVAULT2 extension requires kernel userspace crypto API to be available

 (for details, see TCRYPT section) and kernel driver for HFS+ (hfsplus)

 filesystem.

 Cryptsetup should recognize the basic configuration for portable

 drives.

 The fvault2Dump command should work for all recognized FVAULT2 devices

 and doesn?t require superuser privilege.

 For unlocking with the open, a password must be provided. Other

 unlocking methods are not supported.

 OPEN

 open --type fvault2 <device> <name>

 fvault2Open <device> <name> (old syntax)

 Opens the FVAULT2 (a FileVault2-compatible) <device> (usually the

 second partition on the device) and sets up a mapping <name>.

 See cryptsetup-open(8).

 DUMP

 fvault2Dump <device>

 Dump the header information of an FVAULT2 device.

 See cryptsetup-fvault2Dump(8).

 Note that cryptsetup does not use any macOS code or proprietary

 specifications. Please report all problems related to this

 compatibility extension to the cryptsetup project.

MISCELLANEOUS ACTIONS

 REPAIR

 repair <device>

 Tries to repair the device metadata if possible. Currently supported

 only for LUKS device type.

 See cryptsetup-repair(8).

 BENCHMARK

 benchmark <options> Page 10/18

 Benchmarks ciphers and KDF (key derivation function).

 See cryptsetup-benchmark(8).

PLAIN DM-CRYPT OR LUKS?

 Unless you understand the cryptographic background well, use LUKS. With

 plain dm-crypt there are a number of possible user errors that

 massively decrease security. While LUKS cannot fix them all, it can

 lessen the impact for many of them.

WARNINGS

 A lot of good information on the risks of using encrypted storage, on

 handling problems and on security aspects can be found in the

 Cryptsetup FAQ. Read it. Nonetheless, some risks deserve to be

 mentioned here.

 Backup: Storage media die. Encryption has no influence on that. Backup

 is mandatory for encrypted data as well, if the data has any worth. See

 the Cryptsetup FAQ for advice on how to do a backup of an encrypted

 volume.

 Character encoding: If you enter a passphrase with special symbols, the

 passphrase can change depending on character encoding. Keyboard

 settings can also change, which can make blind input hard or

 impossible. For example, switching from some ASCII 8-bit variant to

 UTF-8 can lead to a different binary encoding and hence different

 passphrase seen by cryptsetup, even if what you see on the terminal is

 exactly the same. It is therefore highly recommended to select

 passphrase characters only from 7-bit ASCII, as the encoding for 7-bit

 ASCII stays the same for all ASCII variants and UTF-8.

 LUKS header: If the header of a LUKS volume gets damaged, all data is

 permanently lost unless you have a header-backup. If a key-slot is

 damaged, it can only be restored from a header-backup or if another

 active key-slot with known passphrase is undamaged. Damaging the LUKS

 header is something people manage to do with surprising frequency. This

 risk is the result of a trade-off between security and safety, as LUKS

 is designed for fast and secure wiping by just overwriting header and

 key-slot area. Page 11/18

 Previously used partitions: If a partition was previously used, it is a

 very good idea to wipe filesystem signatures, data, etc. before

 creating a LUKS or plain dm-crypt container on it. For a quick removal

 of filesystem signatures, use wipefs(8). Take care though that this may

 not remove everything. In particular, MD RAID signatures at the end of

 a device may survive. It also does not remove data. For a full wipe,

 overwrite the whole partition before container creation. If you do not

 know how to do that, the cryptsetup FAQ describes several options.

EXAMPLES

 Example 1: Create LUKS 2 container on block device /dev/sdX.

 sudo cryptsetup --type luks2 luksFormat /dev/sdX

 Example 2: Add an additional passphrase to key slot 5.

 sudo cryptsetup luksAddKey --key-slot 5 /dev/sdX

 Example 3: Create LUKS header backup and save it to file.

 sudo cryptsetup luksHeaderBackup /dev/sdX --header-backup-file

 /var/tmp/NameOfBackupFile

 Example 4: Open LUKS container on /dev/sdX and map it to sdX_crypt.

 sudo cryptsetup open /dev/sdX sdX_crypt

 WARNING: The command in example 5 will erase all key slots.

 Your cannot use your LUKS container afterward anymore unless you

 have a backup to restore.

 Example 5: Erase all key slots on /dev/sdX.

 sudo cryptsetup erase /dev/sdX

 Example 6: Restore LUKS header from backup file.

 sudo cryptsetup luksHeaderRestore /dev/sdX --header-backup-file

 /var/tmp/NameOfBackupFile

RETURN CODES

 Cryptsetup returns 0 on success and a non-zero value on error.

 Error codes are: 1 wrong parameters, 2 no permission (bad passphrase),

 3 out of memory, 4 wrong device specified, 5 device already exists or

 device is busy.

NOTES

 Passphrase processing for PLAIN mode Page 12/18

 Note that no iterated hashing or salting is done in plain mode. If

 hashing is done, it is a single direct hash. This means that

 low-entropy passphrases are easy to attack in plain mode.

 From a terminal: The passphrase is read until the first newline, i.e.

 '\n'. The input without the newline character is processed with the

 default hash or the hash specified with --hash. The hash result will be

 truncated to the key size of the used cipher, or the size specified

 with -s.

 From stdin: Reading will continue until a newline (or until the maximum

 input size is reached), with the trailing newline stripped. The maximum

 input size is defined by the same compiled-in default as for the

 maximum key file size and can be overwritten using --keyfile-size

 option.

 The data read will be hashed with the default hash or the hash

 specified with --hash. The hash result will be truncated to the key

 size of the used cipher, or the size specified with -s.

 Note that if --key-file=- is used for reading the key from stdin,

 trailing newlines are not stripped from the input.

 If "plain" is used as argument to --hash, the input data will not be

 hashed. Instead, it will be zero padded (if shorter than the key size)

 or truncated (if longer than the key size) and used directly as the

 binary key. This is useful for directly specifying a binary key. No

 warning will be given if the amount of data read from stdin is less

 than the key size.

 From a key file: It will be truncated to the key size of the used

 cipher or the size given by -s and directly used as a binary key.

 WARNING: The --hash argument is being ignored. The --hash option is

 usable only for stdin input in plain mode.

 If the key file is shorter than the key, cryptsetup will quit with an

 error. The maximum input size is defined by the same compiled-in

 default as for the maximum key file size and can be overwritten using

 --keyfile-size option.

 Passphrase processing for LUKS Page 13/18

 LUKS uses PBKDF to protect against dictionary attacks and to give some

 protection to low-entropy passphrases (see cryptsetup FAQ).

 From a terminal: The passphrase is read until the first newline and

 then processed by PBKDF2 without the newline character.

 From stdin: LUKS will read passphrases from stdin up to the first

 newline character or the compiled-in maximum key file length. If

 --keyfile-size is given, it is ignored.

 From key file: The complete keyfile is read up to the compiled-in

 maximum size. Newline characters do not terminate the input. The

 --keyfile-size option can be used to limit what is read.

 Passphrase processing: Whenever a passphrase is added to a LUKS header

 (luksAddKey, luksFormat), the user may specify how much the time the

 passphrase processing should consume. The time is used to determine the

 iteration count for PBKDF2 and higher times will offer better

 protection for low-entropy passphrases, but open will take longer to

 complete. For passphrases that have entropy higher than the used key

 length, higher iteration times will not increase security.

 The default setting of one or two seconds is sufficient for most

 practical cases. The only exception is a low-entropy passphrase used on

 a device with a slow CPU, as this will result in a low iteration count.

 On a slow device, it may be advisable to increase the iteration time

 using the --iter-time option in order to obtain a higher iteration

 count. This does slow down all later luksOpen operations accordingly.

 Incoherent behavior for invalid passphrases/keys

 LUKS checks for a valid passphrase when an encrypted partition is

 unlocked. The behavior of plain dm-crypt is different. It will always

 decrypt with the passphrase given. If the given passphrase is wrong,

 the device mapped by plain dm-crypt will essentially still contain

 encrypted data and will be unreadable.

 Supported ciphers, modes, hashes and key sizes

 The available combinations of ciphers, modes, hashes and key sizes

 depend on kernel support. See /proc/crypto for a list of available

 options. You might need to load additional kernel crypto modules in Page 14/18

 order to get more options.

 For the --hash option, if the crypto backend is libgcrypt, then all

 algorithms supported by the gcrypt library are available. For other

 crypto backends, some algorithms may be missing.

 Notes on passphrases

 Mathematics can?t be bribed. Make sure you keep your passphrases safe.

 There are a few nice tricks for constructing a fallback, when suddenly

 out of the blue, your brain refuses to cooperate. These fallbacks need

 LUKS, as it?s only possible with LUKS to have multiple passphrases.

 Still, if your attacker model does not prevent it, storing your

 passphrase in a sealed envelope somewhere may be a good idea as well.

 Notes on Random Number Generators

 Random Number Generators (RNG) used in cryptsetup are always the kernel

 RNGs without any modifications or additions to data stream produced.

 There are two types of randomness cryptsetup/LUKS needs. One type

 (which always uses /dev/urandom) is used for salts, the AF splitter and

 for wiping deleted keyslots.

 The second type is used for the volume key. You can switch between

 using /dev/random and /dev/urandom here, see --use-random and

 --use-urandom options. Using /dev/random on a system without enough

 entropy sources can cause luksFormat to block until the requested

 amount of random data is gathered. In a low-entropy situation (embedded

 system), this can take a very long time and potentially forever. At the

 same time, using /dev/urandom in a low-entropy situation will produce

 low-quality keys. This is a serious problem, but solving it is out of

 scope for a mere man-page. See urandom(4) for more information.

 Authenticated disk encryption (EXPERIMENTAL)

 Since Linux kernel version 4.12 dm-crypt supports authenticated disk

 encryption.

 Normal disk encryption modes are length-preserving (plaintext sector is

 of the same size as a ciphertext sector) and can provide only

 confidentiality protection, but not cryptographically sound data

 integrity protection. Page 15/18

 Authenticated modes require additional space per-sector for

 authentication tag and use Authenticated Encryption with Additional

 Data (AEAD) algorithms.

 If you configure LUKS2 device with data integrity protection, there

 will be an underlying dm-integrity device, which provides additional

 per-sector metadata space and also provide data journal protection to

 ensure atomicity of data and metadata update. Because there must be

 additional space for metadata and journal, the available space for the

 device will be smaller than for length-preserving modes.

 The dm-crypt device then resides on top of such a dm-integrity device.

 All activation and deactivation of this device stack is performed by

 cryptsetup, there is no difference in using luksOpen for integrity

 protected devices. If you want to format LUKS2 device with data

 integrity protection, use --integrity option.

 Since dm-integrity doesn?t support discards (TRIM), dm-crypt device on

 top of it inherits this, so integrity protection mode doesn?t support

 discards either.

 Some integrity modes requires two independent keys (key for encryption

 and for authentication). Both these keys are stored in one LUKS

 keyslot.

 WARNING: All support for authenticated modes is experimental and there

 are only some modes available for now. Note that there are a very few

 authenticated encryption algorithms that are suitable for disk

 encryption. You also cannot use CRC32 or any other non-cryptographic

 checksums (other than the special integrity mode "none"). If for some

 reason you want to have integrity control without using authentication

 mode, then you should separately configure dm-integrity independently

 of LUKS2.

 Notes on loopback device use

 Cryptsetup is usually used directly on a block device (disk partition

 or LVM volume). However, if the device argument is a file, cryptsetup

 tries to allocate a loopback device and map it into this file. This

 mode requires Linux kernel 2.6.25 or more recent which supports the Page 16/18

 loop autoclear flag (loop device is cleared on the last close

 automatically). Of course, you can always map a file to a loop-device

 manually. See the cryptsetup FAQ for an example.

 When device mapping is active, you can see the loop backing file in the

 status command output. Also see losetup(8).

 LUKS2 header locking

 The LUKS2 on-disk metadata is updated in several steps and to achieve

 proper atomic update, there is a locking mechanism. For an image in

 file, code uses flock(2) system call. For a block device, lock is

 performed over a special file stored in a locking directory (by default

 /run/cryptsetup). The locking directory should be created with the

 proper security context by the distribution during the boot-up phase.

 Only LUKS2 uses locks, other formats do not use this mechanism.

 LUKS on-disk format specification

 For LUKS on-disk metadata specification see LUKS1

 <https://gitlab.com/cryptsetup/cryptsetup/wikis/Specification> and

 LUKS2 <https://gitlab.com/cryptsetup/LUKS2-docs>.

AUTHORS

 Cryptsetup is originally written by Jana Saout <jana@saout.de>.

 The LUKS extensions and original man page were written by Clemens

 Fruhwirth <clemens@endorphin.org>.

 Man page extensions by Milan Broz <gmazyland@gmail.com>.

 Man page rewrite and extension by Arno Wagner <arno@wagner.name>.

REPORTING BUGS

 Report bugs at cryptsetup mailing list <cryptsetup@lists.linux.dev> or

 in Issues project section

 <https://gitlab.com/cryptsetup/cryptsetup/-/issues/new>.

 Please attach output of the failed command with --debug option added.

SEE ALSO

 Cryptsetup FAQ

 <https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions>

 cryptsetup(8), integritysetup(8) and veritysetup(8)

CRYPTSETUP Page 17/18

 Part of cryptsetup project <https://gitlab.com/cryptsetup/cryptsetup/>.

cryptsetup 2.6.0 2022-12-14 CRYPTSETUP(8)

Page 18/18

