
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'crypt_r.3' command

$ man crypt_r.3

CRYPT(3) BSD Library Functions Manual CRYPT(3)

NAME

 crypt, crypt_r, crypt_rn, crypt_ra ? passphrase hashing

LIBRARY

 Crypt Library (libcrypt, -lcrypt)

SYNOPSIS

 #include <crypt.h>

 char *

 crypt(const char *phrase, const char *setting);

 char *

 crypt_r(const char *phrase, const char *setting,

 struct crypt_data *data);

 char *

 crypt_rn(const char *phrase, const char *setting,

 struct crypt_data *data, int size);

 char *

 crypt_ra(const char *phrase, const char *setting, void **data,

 int *size);

DESCRIPTION

 The crypt, crypt_r, crypt_rn, and crypt_ra functions irreversibly ?hash?

 phrase for storage in the system password database (shadow(5)) using a

 cryptographic ?hashing method.? The result of this operation is called a

 ?hashed passphrase? or just a ?hash.? Hashing methods are described in Page 1/6

 crypt(5).

 setting controls which hashing method to use, and also supplies various

 parameters to the chosen method, most importantly a random ?salt? which

 ensures that no two stored hashes are the same, even if the phrase

 strings are the same.

 The data argument to crypt_r is a structure of type struct crypt_data.

 It has at least these fields:

 struct crypt_data {

 char output[CRYPT_OUTPUT_SIZE];

 char setting[CRYPT_OUTPUT_SIZE];

 char phrase[CRYPT_MAX_PASSPHRASE_SIZE];

 char initialized;

 };

 Upon a successful return from crypt_r, the hashed passphrase will be

 stored in output. Applications are encouraged, but not required, to use

 the phrase and setting fields to store the strings that they will pass as

 phrase and setting to crypt_r. This will make it easier to erase all

 sensitive data after it is no longer needed.

 The initialized field must be set to zero before the first time a struct

 crypt_data object is first used in a call to crypt_r(). We recommend ze?

 roing the entire object, not just initialized and not just the documented

 fields, before the first use. (Of course, do this before storing any?

 thing in setting and phrase.)

 The data argument to crypt_rn should also point to a struct crypt_data

 object, and size should be the size of that object, cast to int. When

 used with crypt_rn, the entire data object (except for the phrase and

 setting fields) must be zeroed before its first use; this is not just a

 recommendation, as it is for crypt_r. Otherwise, the fields of the ob?

 ject have the same uses that they do for crypt_r.

 On the first call to crypt_ra, data should be the address of a void *

 variable set to NULL, and size should be the address of an int variable

 set to zero. crypt_ra will allocate and initialize a struct crypt_data

 object, using malloc(3), and write its address and size into the vari? Page 2/6

 ables pointed to by data and size. These can be reused in subsequent

 calls. After the application is done hashing passphrases, it should de?

 allocate the struct crypt_data object using free(3).

RETURN VALUES

 Upon successful completion, crypt, crypt_r, crypt_rn, and crypt_ra return

 a pointer to a string which encodes both the hashed passphrase, and the

 settings that were used to encode it. This string is directly usable as

 setting in other calls to crypt, crypt_r, crypt_rn, and crypt_ra, and as

 prefix in calls to crypt_gensalt, crypt_gensalt_rn, and crypt_gensalt_ra.

 It will be entirely printable ASCII, and will not contain whitespace or

 the characters ?:?, ?;?, ?*?, ?!?, or ?\?. See crypt(5) for more detail

 on the format of hashed passphrases.

 crypt places its result in a static storage area, which will be overwrit?

 ten by subsequent calls to crypt. It is not safe to call crypt from mul?

 tiple threads simultaneously.

 crypt_r, crypt_rn, and crypt_ra place their result in the output field of

 their data argument. It is safe to call them from multiple threads si?

 multaneously, as long as a separate data object is used for each thread.

 Upon error, crypt_r, crypt_rn, and crypt_ra write an invalid hashed

 passphrase to the output field of their data argument, and crypt writes

 an invalid hash to its static storage area. This string will be shorter

 than 13 characters, will begin with a ?*?, and will not compare equal to

 setting.

 Upon error, crypt_rn and crypt_ra return a null pointer. crypt_r and

 crypt may also return a null pointer, or they may return a pointer to the

 invalid hash, depending on how libcrypt was configured. (The option to

 return the invalid hash is for compatibility with old applications that

 assume that crypt cannot return a null pointer. See PORTABILITY NOTES

 below.)

 All four functions set errno when they fail.

ERRORS

 EINVAL setting is invalid, or requests a hashing method that

 is not supported. Page 3/6

 ERANGE phrase is too long (more than

 CRYPT_MAX_PASSPHRASE_SIZE characters; some hashing

 methods may have lower limits).

 crypt_rn only: size is too small for the hashing

 method requested by setting.

 ENOMEM Failed to allocate internal scratch memory.

 crypt_ra only: failed to allocate memory for data.

 ENOSYS or EOPNOTSUPP

 Hashing passphrases is not supported at all on this

 installation, or the hashing method requested by

 setting is not supported. These error codes are not

 used by this version of libcrypt, but may be encoun?

 tered on other systems.

PORTABILITY NOTES

 crypt is included in POSIX, but crypt_r, crypt_rn, and crypt_ra are not

 part of any standard.

 POSIX does not specify any hashing methods, and does not require hashed

 passphrases to be portable between systems. In practice, hashed

 passphrases are portable as long as both systems support the hashing

 method that was used. However, the set of supported hashing methods

 varies considerably from system to system.

 The behavior of crypt on errors isn't well standardized. Some implemen?

 tations simply can't fail (except by crashing the program), others return

 a null pointer or a fixed string. Most implementations don't set errno,

 but some do. POSIX specifies returning a null pointer and setting errno,

 but it defines only one possible error, ENOSYS, in the case where crypt

 is not supported at all. Some older applications are not prepared to

 handle null pointers returned by crypt. The behavior described above for

 this implementation, setting errno and returning an invalid hashed

 passphrase different from setting, is chosen to make these applications

 fail closed when an error occurs.

 Due to historical restrictions on the export of cryptographic software

 from the USA, crypt is an optional POSIX component. Applications should Page 4/6

 therefore be prepared for crypt not to be available, or to always fail

 (setting errno to ENOSYS) at runtime.

 POSIX specifies that crypt is declared in <unistd.h>, but only if the

 macro _XOPEN_CRYPT is defined and has a value greater than or equal to

 zero. Since libcrypt does not provide <unistd.h>, it declares crypt,

 crypt_r, crypt_rn, and crypt_ra in <crypt.h> instead.

 On a minority of systems (notably recent versions of Solaris), crypt uses

 a thread-specific static storage buffer, which makes it safe to call from

 multiple threads simultaneously, but does not prevent each call within a

 thread from overwriting the results of the previous one.

BUGS

 Some implementations of crypt, upon error, return an invalid hash that is

 stored in a read-only location or only initialized once, which means that

 it is only safe to erase the buffer pointed to by the crypt return value

 if an error did not occur.

 struct crypt_data may be quite large (32kB in this implementation of

 libcrypt; over 128kB in some other implementations). This is large

 enough that it may be unwise to allocate it on the stack.

 Some recently designed hashing methods need even more scratch memory, but

 the crypt_r interface makes it impossible to change the size of struct

 crypt_data without breaking binary compatibility. The crypt_rn interface

 could accommodate larger allocations for specific hashing methods, but

 the caller of crypt_rn has no way of knowing how much memory to allocate.

 crypt_ra does the allocation itself, but can only make a single call to

 malloc(3).

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?crypt ? Thread safety ? MT-Unsafe race:crypt ?

 ??

 ?crypt_r, crypt_rn, ? Thread safety ? MT-Safe ? Page 5/6

 ?crypt_ra ? ? ?

 ??

HISTORY

 A rotor-based crypt function appeared in Version 6 AT&T UNIX. The

 ?traditional? DES-based crypt first appeared in Version 7 AT&T UNIX.

 crypt_r originates with the GNU C Library. There's also a crypt_r func?

 tion on HP-UX and MKS Toolkit, but the prototypes and semantics differ.

 crypt_rn and crypt_ra originate with the Openwall project.

SEE ALSO

 crypt_gensalt(3), getpass(3), getpwent(3), shadow(3), login(1),

 passwd(1), crypt(5), passwd(5), shadow(5), pam(8)

Openwall Project October 11, 2017 Openwall Project

Page 6/6

