
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'crypt_gensalt_rn.3' command

$ man crypt_gensalt_rn.3

CRYPT_GENSALT(3) BSD Library Functions Manual CRYPT_GENSALT(3)

NAME

 crypt_gensalt, crypt_gensalt_rn, crypt_gensalt_ra ? encode settings for

 passphrase hashing

LIBRARY

 Crypt Library (libcrypt, -lcrypt)

SYNOPSIS

 #include <crypt.h>

 char *

 crypt_gensalt(const char *prefix, unsigned long count,

 const char *rbytes, int nrbytes);

 char *

 crypt_gensalt_rn(const char * prefix, unsigned long count,

 const char *rbytes, int nrbytes, char * output, int output_size);

 char *

 crypt_gensalt_ra(const char *prefix, unsigned long count,

 const char *rbytes, int nrbytes);

DESCRIPTION

 The crypt_gensalt, crypt_gensalt_rn, and crypt_gensalt_ra functions com?

 pile a string for use as the setting argument to crypt, crypt_r,

 crypt_rn, and crypt_ra. prefix selects the hashing method to use. count

 controls the CPU time cost of the hash; the valid range for count and the

 exact meaning of ?CPU time cost? depends on the hashing method, but Page 1/4

 larger numbers correspond to more costly hashes. rbytes should point to

 nrbytes cryptographically random bytes for use as ?salt.?

 If prefix is a null pointer, the best available hashing method will be

 selected. (CAUTION: if prefix is an empty string, the ?traditional? DES-

 based hashing method will be selected; this method is unacceptably weak

 by modern standards.) If count is 0, a low default cost will be se?

 lected. If rbytes is a null pointer, an appropriate number of random

 bytes will be obtained from the operating system, and nrbytes is ignored.

 See crypt(5) for other strings that can be used as prefix, and valid val?

 ues of count for each.

RETURN VALUES

 crypt_gensalt, crypt_gensalt_rn, and crypt_gensalt_ra return a pointer to

 an encoded setting string. This string will be entirely printable ASCII,

 and will not contain whitespace or the characters ?:?, ?;?, ?*?, ?!?, or

 ?\?. See crypt(5) for more detail on the format of this string. Upon

 error, they return a null pointer and set errno to an appropriate error

 code.

 crypt_gensalt places its result in a static storage area, which will be

 overwritten by subsequent calls to crypt_gensalt. It is not safe to call

 crypt_gensalt from multiple threads simultaneously. However, it is safe

 to pass the string returned by crypt_gensalt directly to crypt without

 copying it; each function has its own static storage area.

 crypt_gensalt_rn places its result in the supplied output buffer, which

 has output_size bytes of storage available. output_size should be

 greater than or equal to CRYPT_GENSALT_OUTPUT_SIZE.

 crypt_gensalt_ra allocates memory for its result using malloc(3). It

 should be freed with free(3) after use.

 Upon error, in addition to returning a null pointer, crypt_gensalt and

 crypt_gensalt_rn will write an invalid setting string to their output

 buffer, if there is enough space; this string will begin with a ?*? and

 will not be equal to prefix.

ERRORS

 EINVAL prefix is invalid or not supported by this implementa? Page 2/4

 tion; count is invalid for the requested prefix; the

 input nrbytes is insufficient for the smallest valid

 salt with the requested prefix.

 ERANGE crypt_gensalt_rn only: output_size is too small to

 hold the compiled setting string.

 ENOMEM Failed to allocate internal scratch memory.

 crypt_gensalt_ra only: failed to allocate memory for

 the compiled setting string.

 ENOSYS, EACCES, EIO, etc.

 Obtaining random bytes from the operating system

 failed. This can only happen when rbytes is a null

 pointer.

FEATURE TEST MACROS

 The following macros are defined by <crypt.h>:

 CRYPT_GENSALT_IMPLEMENTS_DEFAULT_PREFIX

 A null pointer can be specified as the prefix argument.

 CRYPT_GENSALT_IMPLEMENTS_AUTO_ENTROPY

 A null pointer can be specified as the rbytes argument.

PORTABILITY NOTES

 The functions crypt_gensalt, crypt_gensalt_rn, and crypt_gensalt_ra are

 not part of any standard. They originate with the Openwall project. A

 function with the name crypt_gensalt also exists on Solaris 10 and newer,

 but its prototype and semantics differ.

 The default prefix and auto entropy features are available since libx?

 crypt version 4.0.0. Portable software can use feature test macros to

 find out whether null pointers can be used for the prefix and rbytes ar?

 guments.

 The set of supported hashing methods varies considerably from system to

 system.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ? Page 3/4

 ???

 ?crypt_gensalt ? Thread safety ? MT-Unsafe race:crypt_gensalt ?

 ???

 ?crypt_gensalt_rn, ? Thread safety ? MT-Safe ?

 ?crypt_gensalt_ra ? ? ?

 ???

SEE ALSO

 crypt(3), getpass(3), getpwent(3), shadow(3), login(1), passwd(1),

 crypt(5), passwd(5), shadow(5), pam(8)

Openwall Project October 11, 2017 Openwall Project

Page 4/4

