
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'crypt.5' command

$ man crypt.5

CRYPT(5) BSD File Formats Manual CRYPT(5)

NAME

 crypt ? storage format for hashed passphrases and available hashing meth?

 ods

DESCRIPTION

 The hashing methods implemented by crypt(3) are designed only to process

 user passphrases for storage and authentication; they are not suitable

 for use as general-purpose cryptographic hashes.

 Passphrase hashing is not a replacement for strong passphrases. It is

 always possible for an attacker with access to the hashed passphrases to

 guess and check possible cleartext passphrases. However, with a strong

 hashing method, guessing will be too slow for the attacker to discover a

 strong passphrase.

 All of the hashing methods use a ?salt? to perturb the hash function, so

 that the same passphrase may produce many possible hashes. Newer methods

 accept longer salt strings. The salt should be chosen at random for each

 user. Salt defeats a number of attacks:

 1. It is not possible to hash a passphrase once and then test it

 against each account's stored hash; the hash calculation must be re?

 peated for each account.

 2. It is not possible to tell whether two accounts use the same

 passphrase without successfully guessing one of the phrases.

 3. Tables of precalculated hashes of commonly used passphrases must Page 1/10

 have an entry for each possible salt, which makes them impractically

 large.

 All of the hashing methods are also deliberately engineered to be slow;

 they use many iterations of an underlying cryptographic primitive to in?

 crease the cost of each guess. The newer hashing methods allow the num?

 ber of iterations to be adjusted, using the ?CPU time cost? parameter to

 crypt_gensalt(3). This makes it possible to keep the hash slow as hard?

 ware improves.

FORMAT OF HASHED PASSPHRASES

 All of the hashing methods supported by crypt(3) produce a hashed

 passphrase which consists of four components: prefix, options, salt, and

 hash. The prefix controls which hashing method is to be used, and is the

 appropriate string to pass to crypt_gensalt(3) to select that method.

 The contents of options, salt, and hash are up to the method. Depending

 on the method, the prefix and options components may be empty.

 The setting argument to crypt(3) must begin with the first three compo?

 nents of a valid hashed passphrase, but anything after that is ignored.

 This makes authentication simple: hash the input passphrase using the

 stored passphrase as the setting, and then compare the result to the

 stored passphrase.

 Hashed passphrases are always entirely printable ASCII, and do not con?

 tain any whitespace or the characters ?:?, ?;?, ?*?, ?!?, or ?\?. (These

 characters are used as delimiters and special markers in the passwd(5)

 and shadow(5) files.)

 The syntax of each component of a hashed passphrase is up to the hashing

 method. ?$? characters usually delimit components, and the salt and hash

 are usually encoded as numerals in base 64. The details of this base-64

 encoding vary among hashing methods. The common ?base64? encoding speci?

 fied by RFC 4648 is usually not used.

AVAILABLE HASHING METHODS

 This is a list of all the hashing methods supported by crypt(3), in de?

 creasing order of strength. Many of the older methods are now considered

 too weak to use for new passphrases. The hashed passphrase format is ex? Page 2/10

 pressed with extended regular expressions (see regex(7)) and does not

 show the division into prefix, options, salt, and hash.

 yescrypt

 yescrypt is a scalable passphrase hashing scheme designed by Solar De?

 signer, which is based on Colin Percival's scrypt. Recommended for new

 hashes.

 Prefix

 "y"

 Hashed passphrase format

 \$y\$[./A-Za-z0-9]+\$[./A-Za-z0-9]{,86}\$[./A-Za-z0-9]{43}

 Maximum passphrase length

 unlimited

 Hash size

 256 bits

 Salt size

 up to 512 bits

 CPU time cost parameter

 1 to 11 (logarithmic)

 gost-yescrypt

 gost-yescrypt uses the output from the yescrypt hashing method in place

 of a hmac message. Thus, the yescrypt crypto properties are superseded

 by the GOST R 34.11-2012 (Streebog) hash function with a 256 bit digest.

 This hashing method is useful in applications that need modern passphrase

 hashing methods, but require to rely on the cryptographic properties of

 GOST algorithms. The GOST R 34.11-2012 (Streebog) hash function has been

 published by the IETF as RFC 6986. Recommended for new hashes.

 Prefix

 "gy"

 Hashed passphrase format

 \$gy\$[./A-Za-z0-9]+\$[./A-Za-z0-9]{,86}\$[./A-Za-z0-9]{43}

 Maximum passphrase length

 unlimited

 Hash size Page 3/10

 256 bits

 Salt size

 up to 512 bits

 CPU time cost parameter

 1 to 11 (logarithmic)

 scrypt

 scrypt is a password-based key derivation function created by Colin Per?

 cival, originally for the Tarsnap online backup service. The algorithm

 was specifically designed to make it costly to perform large-scale custom

 hardware attacks by requiring large amounts of memory. In 2016, the

 scrypt algorithm was published by IETF as RFC 7914.

 Prefix

 "7"

 Hashed passphrase format

 \$7\$[./A-Za-z0-9]{11,97}\$[./A-Za-z0-9]{43}

 Maximum passphrase length

 unlimited

 Hash size

 256 bits

 Salt size

 up to 512 bits

 CPU time cost parameter

 6 to 11 (logarithmic)

 bcrypt

 A hash based on the Blowfish block cipher, modified to have an extra-ex?

 pensive key schedule. Originally developed by Niels Provos and David

 Mazieres for OpenBSD and also supported on recent versions of FreeBSD and

 NetBSD, on Solaris 10 and newer, and on several GNU/*/Linux distribu?

 tions.

 Prefix

 "$2b$"

 Hashed passphrase format

 \$2[abxy]\$[0-9]{2}\$[./A-Za-z0-9]{53} Page 4/10

 Maximum passphrase length

 72 characters

 Hash size

 184 bits

 Salt size

 128 bits

 CPU time cost parameter

 4 to 31 (logarithmic)

 The alternative prefix "$2y$" is equivalent to "$2b$". It exists for

 historical reasons only. The alternative prefixes "$2a$" and "$2x$" pro?

 vide bug-compatibility with crypt_blowfish 1.0.4 and earlier, which in?

 correctly processed characters with the 8th bit set.

 sha512crypt

 A hash based on SHA-2 with 512-bit output, originally developed by Ulrich

 Drepper for GNU libc. Supported on Linux but not common elsewhere. Ac?

 ceptable for new hashes. The default CPU time cost parameter is 5000,

 which is too low for modern hardware.

 Prefix

 "6"

 Hashed passphrase format

 \$6\$(rounds=[1-9][0-9]+\$)?[^$:\n]{1,16}\$[./0-9A-Za-z]{86}

 Maximum passphrase length

 unlimited

 Hash size

 512 bits

 Salt size

 6 to 96 bits

 CPU time cost parameter

 1000 to 999,999,999

 sha256crypt

 A hash based on SHA-2 with 256-bit output, originally developed by Ulrich

 Drepper for GNU libc. Supported on Linux but not common elsewhere. Ac?

 ceptable for new hashes. The default CPU time cost parameter is 5000, Page 5/10

 which is too low for modern hardware.

 Prefix

 "5"

 Hashed passphrase format

 \$5\$(rounds=[1-9][0-9]+\$)?[^$:\n]{1,16}\$[./0-9A-Za-z]{43}

 Maximum passphrase length

 unlimited

 Hash size

 256 bits

 Salt size

 6 to 96 bits

 CPU time cost parameter

 1000 to 999,999,999

 sha1crypt

 A hash based on HMAC-SHA1. Originally developed by Simon Gerraty for

 NetBSD. Not as weak as the DES-based hashes below, but SHA1 is so cheap

 on modern hardware that it should not be used for new hashes.

 Prefix

 "$sha1"

 Hashed passphrase format

 \$sha1\$[1-9][0-9]+\$[./0-9A-Za-z]{1,64}\$[./0-9A-Za-z]{8,64}[./0-9A-

 Za-z]{32}

 Maximum passphrase length

 unlimited

 Hash size

 160 bits

 Salt size

 6 to 384 bits

 CPU time cost parameter

 4 to 4,294,967,295

 SunMD5

 A hash based on the MD5 algorithm, with additional cleverness to make

 precomputation difficult, originally developed by Alec David Muffet for Page 6/10

 Solaris. Not adopted elsewhere, to our knowledge. Not as weak as the

 DES-based hashes below, but MD5 is so cheap on modern hardware that it

 should not be used for new hashes.

 Prefix

 "$md5"

 Hashed passphrase format

 \$md5(,rounds=[1-9][0-9]+)?\$[./0-9A-Za-z]{8}\${1,2}[./0-9A-Za-z]{22}

 Maximum passphrase length

 unlimited

 Hash size

 128 bits

 Salt size

 48 bits

 CPU time cost parameter

 4096 to 4,294,963,199

 md5crypt

 A hash based on the MD5 algorithm, originally developed by Poul-Henning

 Kamp for FreeBSD. Supported on most free Unixes and newer versions of

 Solaris. Not as weak as the DES-based hashes below, but MD5 is so cheap

 on modern hardware that it should not be used for new hashes. CPU time

 cost is not adjustable.

 Prefix

 "1"

 Hashed passphrase format

 \$1\$[^$:\n]{1,8}\$[./0-9A-Za-z]{22}

 Maximum passphrase length

 unlimited

 Hash size

 128 bits

 Salt size

 6 to 48 bits

 CPU time cost parameter

 1000 Page 7/10

 bsdicrypt (BSDI extended DES)

 A weak extension of traditional DES, which eliminates the length limit,

 increases the salt size, and makes the time cost tunable. It originates

 with BSDI and is also available on at least NetBSD, OpenBSD, and FreeBSD

 due to the use of David Burren's FreeSec library. It is better than

 bigcrypt and traditional DES, but still should not be used for new

 hashes.

 Prefix

 "_"

 Hashed passphrase format

 _[./0-9A-Za-z]{19}

 Maximum passphrase length

 unlimited (ignores 8th bit)

 Hash size

 64 bits

 Effective key size

 56 bits

 Salt size

 24 bits

 CPU time cost parameter

 1 to 16,777,215 (must be odd)

 bigcrypt

 A weak extension of traditional DES, available on some System V-derived

 Unixes. All it does is raise the length limit from 8 to 128 characters,

 and it does this in a crude way that allows attackers to guess chunks of

 a long passphrase in parallel. It should not be used for new hashes.

 Prefix

 "" (empty string)

 Hashed passphrase format

 [./0-9A-Za-z]{13,178}

 Maximum passphrase length

 128 characters (ignores 8th bit)

 Hash size Page 8/10

 up to 1024 bits

 Effective key size

 up to 896 bits

 Salt size

 12 bits

 CPU time cost parameter

 25

 descrypt (Traditional DES)

 The original hashing method from Unix V7, based on the DES block cipher.

 Because DES is cheap on modern hardware, because there are only 4096 pos?

 sible salts and 2**56 possible hashes, and because it truncates

 passphrases to 8 characters, it is feasible to discover any passphrase

 hashed with this method. It should only be used if you absolutely have

 to generate hashes that will work on an old operating system that sup?

 ports nothing else.

 Prefix

 "" (empty string)

 Hashed passphrase format

 [./0-9A-Za-z]{13}

 Maximum passphrase length

 8 characters (ignores 8th bit)

 Hash size

 64 bits

 Effective key size

 56 bits

 Salt size

 12 bits

 CPU time cost parameter

 25

 NT

 The hashing method used for network authentication in some versions of

 the SMB/CIFS protocol. Available, for cross-compatibility's sake, on

 FreeBSD. Based on MD4. Has no salt or tunable cost parameter. Like Page 9/10

 traditional DES, it is so weak that any passphrase hashed with this

 method is guessable. It should only be used if you absolutely have to

 generate hashes that will work on an old operating system that supports

 nothing else.

 Prefix

 "3"

 Hashed passphrase format

 \$3\$\$[0-9a-f]{32}

 Maximum passphrase length

 unlimited

 Hash size

 256 bits

 Salt size

 0 bits

 CPU time cost parameter

 1

SEE ALSO

 crypt(3), crypt_gensalt(3), getpwent(3), passwd(5), shadow(5), pam(8)

 Niels Provos and David Mazieres, ?A Future-Adaptable Password Scheme?,

 Proceedings of the 1999 USENIX Annual Technical Conference,

 https://www.usenix.org/events/usenix99/provos.html, June 1999.

 Robert Morris and Ken Thompson, ?Password Security: A Case History?,

 Communications of the ACM, 11, 22,

 http://wolfram.schneider.org/bsd/7thEdManVol2/password/password.pdf,

 1979.

Openwall Project October 11, 2017 Openwall Project

Page 10/10

