
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'criu.8' command

$ man criu.8

CRIU(8) CRIU Manual CRIU(8)

NAME

 criu - checkpoint/restore in userspace

SYNOPSIS

 criu command [option ...]

DESCRIPTION

 criu is a tool for checkpointing and restoring running applications. It

 does this by saving their state as a collection of files (see the dump

 command) and creating equivalent processes from those files (see the

 restore command). The restore operation can be performed at a later

 time, on a different system, or both.

OPTIONS

 Most of the long flags can be prefixed with no- to negate the option

 (example: --display-stats and --no-display-stats).

 Common options

 Common options are applicable to any command.

 -v[v...], --verbosity

 Increase verbosity up from the default level. In case of short op?

 tion, multiple v can be used, each increasing verbosity by one.

 -vnum, --verbosity=num

 Set verbosity level to num. The higher the level, the more output

 is produced.

 The following levels are available: Page 1/21

 ? -v0 no output;

 ? -v1 only errors;

 ? -v2 above plus warnings (this is the default level);

 ? -v3 above plus information messages and timestamps;

 ? -v4 above plus lots of debug.

 --config file

 Pass a specific configuration file to criu.

 --no-default-config

 Disable parsing of default configuration files.

 --pidfile file

 Write root task, service or page-server pid into a file.

 -o, --log-file file

 Write logging messages to a file.

 --display-stats

 During dump, as well as during restore, criu collects some statis?

 tics, like the time required to dump or restore the process, or the

 number of pages dumped or restored. This information is always

 saved to the stats-dump and stats-restore files, and can be shown

 using crit(1). The option --display-stats prints out this informa?

 tion on the console at the end of a dump or restore operation.

 -D, --images-dir path

 Use path as a base directory where to look for sets of image files.

 --stream

 dump/restore images using criu-image-streamer. See

 https://github.com/checkpoint-restore/criu-image-streamer for de?

 tailed usage.

 --prev-images-dir path

 Use path as a parent directory where to look for sets of image

 files. This option makes sense in case of incremental dumps.

 -W, --work-dir dir

 Use directory dir for putting logs, pidfiles and statistics. If not

 specified, path from -D option is taken.

 --close fd Page 2/21

 Close file descriptor fd before performing any actions.

 -L, --libdir path

 Path to plugins directory.

 --enable-fs [fs[,fs...]]

 Specify a comma-separated list of filesystem names that should be

 auto-detected. The value all enables auto-detection for all

 filesystems.

 Note: This option is not safe, use at your own risk. Auto-detecting

 a filesystem mount assumes that the mountpoint can be restored with

 mount(src, mountpoint, flags, options). When used, dump is expected

 to always succeed if a mountpoint is to be auto-detected, however

 restore may fail (or do something wrong) if the assumption for re?

 store logic is incorrect. This option is not compatible with --ex?

 ternal dev.

 --action-script script

 Add an external action script to be executed at certain stages. The

 environment variable CRTOOLS_SCRIPT_ACTION is available to the

 script to find out which action is being executed, and its value

 can be one of the following:

 pre-dump

 run prior to beginning a dump

 post-dump

 run upon dump completion

 pre-restore

 run prior to beginning a restore

 post-restore

 run upon restore completion

 pre-resume

 run when all processes and resources are restored but tasks are

 stopped waiting for final kick to run. Must not fail.

 post-resume

 called at the very end, when everything is restored and pro?

 cesses were resumed Page 3/21

 network-lock

 run to lock network in a target network namespace

 network-unlock

 run to unlock network in a target network namespace

 setup-namespaces

 run once root task has just been created with required name?

 spaces. Note it is an early stage of restore, when nothing is

 restored yet, except for namespaces themselves

 post-setup-namespaces

 called after the namespaces are configured

 orphan-pts-master

 called after master pty is opened and unlocked. This hook can

 be used only in the RPC mode, and the notification message con?

 tains a file descriptor for the master pty

 -V, --version

 Print program version and exit.

 -h, --help

 Print some help and exit.

 pre-dump

 Performs the pre-dump procedure, during which criu creates a snapshot

 of memory changes since the previous pre-dump. Note that during this

 criu also creates the fsnotify cache which speeds up the restore proce?

 dure. pre-dump requires at least -t option (see dump below). In addi?

 tion, page-server options may be specified.

 --track-mem

 Turn on memory changes tracker in the kernel. If the option is not

 passed the memory tracker get turned on implicitly.

 --pre-dump-mode=mode

 There are two mode to operate pre-dump algorithm. The splice mode

 is parasite based, whereas read mode is based on process_vm_readv

 syscall. The read mode incurs reduced frozen time and reduced mem?

 ory pressure as compared to splice mode. Default is splice mode.

 dump Page 4/21

 Performs a checkpoint procedure.

 -t, --tree pid

 Checkpoint the whole process tree starting from pid.

 -R, --leave-running

 Leave tasks in running state after checkpoint, instead of killing.

 This option is pretty dangerous and should be used only if you un?

 derstand what you are doing.

 Note if task is about to run after been checkpointed, it can modify

 TCP connections, delete files and do other dangerous actions.

 Therefore, criu can not guarantee that the next restore action will

 succeed. Most likely if this option is used, at least the file sys?

 tem snapshot must be made with the help of post-dump action script.

 In other words, do not use it unless really needed.

 -s, --leave-stopped

 Leave tasks in stopped state after checkpoint, instead of killing.

 --external type[id]:value

 Dump an instance of an external resource. The generic syntax is

 type of resource, followed by resource id (enclosed in literal

 square brackets), and optional value (prepended by a literal

 colon). The following resource types are currently supported: mnt,

 dev, file, tty, unix. Syntax depends on type. Note to restore ex?

 ternal resources, either --external or --inherit-fd is used, de?

 pending on resource type.

 --external mnt[mountpoint]:name

 Dump an external bind mount referenced by mountpoint, saving it to

 image under the identifier name.

 --external mnt[]:flags

 Dump all external bind mounts, autodetecting those. Optional flags

 can contain m to also dump external master mounts, s to also dump

 external shared mounts (default behavior is to abort dumping if

 such mounts are found). If flags are not provided, colon is op?

 tional.

 --external dev[major/minor]:name Page 5/21

 Allow to dump a mount namespace having a real block device mounted.

 A block device is identified by its major and minor numbers, and

 criu saves its information to image under the identifier name.

 --external file[mnt_id:inode]

 Dump an external file, i.e. an opened file that is can not be re?

 solved from the current mount namespace, which can not be dumped

 without using this option. The file is identified by mnt_id (a

 field obtained from /proc/pid/fdinfo/N) and inode (as returned by

 stat(2)).

 --external tty[rdev:dev]

 Dump an external TTY, identified by st_rdev and st_dev fields re?

 turned by stat(2).

 --external unix[id]

 Tell criu that one end of a pair of UNIX sockets (created by sock?

 etpair(2)) with the given id is OK to be disconnected.

 --external net[inode]:name

 Mark a network namespace as external and do not include it in the

 checkpoint. The label name can be used with --inherit-fd during re?

 store to specify a file descriptor to a preconfigured network name?

 space.

 --external pid[inode]:name

 Mark a PID namespace as external. This can be later used to restore

 a process into an existing PID namespace. The label name can be

 used to assign another PID namespace during restore with the help

 of --inherit-fd.

 --freeze-cgroup

 Use cgroup freezer to collect processes.

 --manage-cgroups

 Collect cgroups into the image thus they gonna be restored then.

 Without this option, criu will not save cgroups configuration asso?

 ciated with a task.

 --cgroup-props spec

 Specify controllers and their properties to be saved into the image Page 6/21

 file. criu predefines specifications for common controllers, but

 since the kernel can add new controllers and modify their proper?

 ties, there should be a way to specify ones matched the kernel.

 spec argument describes the controller and properties specification

 in a simplified YAML form:

 "c1":

 - "strategy": "merge"

 - "properties": ["a", "b"]

 "c2":

 - "strategy": "replace"

 - "properties": ["c", "d"]

 where c1 and c2 are controllers names, and a, b, c, d are their

 properties.

 Note the format: double quotes, spaces and new lines are required.

 The strategy specifies what to do if a controller specified already

 exists as a built-in one: criu can either merge or replace such.

 For example, the command line for the above example should look

 like this:

 --cgroup-props "\"c1\":\n - \"strategy\": \"merge\"\n - \"properties\": [\"a\", \"b\"]\n \"c2\":\n - \"strategy\": \"replace\"\n -

\"properties\": [\"c\", \"d\"]"

 --cgroup-props-file file

 Same as --cgroup-props, except the specification is read from the

 file.

 --cgroup-dump-controller name

 Dump a controller with name only, skipping anything else that was

 discovered automatically (usually via /proc). This option is useful

 when one needs criu to skip some controllers.

 --cgroup-yard path

 Instead of trying to mount cgroups in CRIU, provide a path to a di?

 rectory with already created cgroup yard. Useful if you don?t want

 to grant CAP_SYS_ADMIN to CRIU. For every cgroup mount there should

 be exactly one directory. If there is only one controller in this

 mount, the dir?s name should be just the name of the controller. If Page 7/21

 there are multiple controllers comounted, the directory name should

 have them be separated by a comma.

 For example, if /proc/cgroups looks like this:

 #subsys_name hierarchy num_cgroups enabled

 cpu 1 1 1

 devices 2 2 1

 freezer 2 2 1

 then you can create the cgroup yard by the following commands:

 mkdir private_yard

 cd private_yard

 mkdir cpu

 mount -t cgroup -o cpu none cpu

 mkdir devices,freezer

 mount -t cgroup -o devices,freezer none devices,freezer

 --tcp-established

 Checkpoint established TCP connections.

 --tcp-close

 Don?t dump the state of, or block, established tcp connections (in?

 cluding the connection is once established but now closed). This is

 useful when tcp connections are not going to be restored.

 --skip-in-flight

 This option skips in-flight TCP connections. If any TCP connections

 that are not yet completely established are found, criu ignores

 these connections, rather than errors out. The TCP stack on the

 client side is expected to handle the re-connect gracefully.

 --evasive-devices

 Use any path to a device file if the original one is inaccessible.

 --page-server

 Send pages to a page server (see the page-server command).

 --force-irmap

 Force resolving names for inotify and fsnotify watches.

 --auto-dedup

 Deduplicate "old" data in pages images of previous dump. This op? Page 8/21

 tion implies incremental dump mode (see the pre-dump command).

 -l, --file-locks

 Dump file locks. It is necessary to make sure that all file lock

 users are taken into dump, so it is only safe to use this for en?

 closed containers where locks are not held by any processes outside

 of dumped process tree.

 --link-remap

 Allows to link unlinked files back, if possible (modifies filesys?

 tem during restore).

 --timeout number

 Set a time limit in seconds for collecting tasks during the dump

 operation. The timeout is 10 seconds by default.

 --ghost-limit size

 Set the maximum size of deleted file to be carried inside image. By

 default, up to 1M file is allowed. Using this option allows to not

 put big deleted files inside images. Argument size may be postfixed

 with a K, M or G, which stands for kilo-, mega, and gigabytes, ac?

 cordingly.

 -j, --shell-job

 Allow one to dump shell jobs. This implies the restored task will

 inherit session and process group ID from the criu itself. This op?

 tion also allows to migrate a single external tty connection, to

 migrate applications like top. If used with dump command, it must

 be specified with restore as well.

 --cpu-cap [cap[,cap...]]

 Specify CPU capabilities to write to an image file. The argument is

 a comma-separated list of:

 ? none to ignore capabilities at all; the image will not be pro?

 duced on dump, neither any check performed on restore;

 ? fpu to check if FPU module is compatible;

 ? ins to check if CPU supports all instructions required;

 ? cpu to check if CPU capabilities are exactly matching;

 ? all for all above set. Page 9/21

 By default the option is set to fpu and ins.

 --cgroup-root [controller:]/newroot

 Change the root for the controller that will be dumped. By default,

 criu simply dumps everything below where any of the tasks live.

 However, if a container moves all of its tasks into a cgroup direc?

 tory below the container engine?s default directory for tasks, per?

 missions will not be preserved on the upper directories with no

 tasks in them, which may cause problems.

 --lazy-pages

 Perform the dump procedure without writing memory pages into the

 image files and prepare to service page requests over the network.

 When dump runs in this mode it presumes that lazy-pages daemon will

 connect to it and fetch memory pages to lazily inject them into the

 restored process address space. This option is intended for

 post-copy (lazy) migration and should be used in conjunction with

 restore with appropriate options.

 --file-validation [mode]

 Set the method to be used to validate open files. Validation is

 done to ensure that the version of the file being restored is the

 same version when it was dumped.

 The mode may be one of the following:

 filesize

 To explicitly use only the file size check all the time. This

 is the fastest and least intensive check.

 buildid

 To validate ELF files with their build-ID. If the build-ID can?

 not be obtained, chksm-first method will be used. This is the

 default if mode is unspecified.

 --network-lock [mode]

 Set the method to be used for network locking/unlocking. Locking is

 done to ensure that tcp packets are dropped between dump and re?

 store. This is done to avoid the kernel sending RST when a packet

 arrives destined for the dumped process. Page 10/21

 The mode may be one of the following:

 iptables

 Use iptables rules to drop the packets. This is the default if

 mode is not specified.

 nftables

 Use nftables rules to drop the packets.

 restore

 Restores previously checkpointed processes.

 --inherit-fd fd[N]:resource

 Inherit a file descriptor. This option lets criu use an already

 opened file descriptor N for restoring a file identified by re?

 source. This option can be used to restore an external resource

 dumped with the help of --external file, tty, pid and unix options.

 The resource argument can be one of the following:

 ? tty[rdev:dev]

 ? pipe[inode]

 ? socket[inode*]*

 ? file[mnt_id:inode]

 ? path/to/file

 Note that square brackets used in this option arguments are liter?

 als and usually need to be escaped from shell.

 -d, --restore-detached

 Detach criu itself once restore is complete.

 -s, --leave-stopped

 Leave tasks in stopped state after restore (rather than resuming

 their execution).

 -S, --restore-sibling

 Restore root task as a sibling (makes sense only with --restore-de?

 tached).

 --log-pid

 Write separate logging files per each pid.

 -r, --root path

 Change the root filesystem to path (when run in a mount namespace). Page 11/21

 This option is required to restore a mount namespace. The directory

 path must be a mount point and its parent must not be overmounted.

 --external type[id]:value

 Restore an instance of an external resource. The generic syntax is

 type of resource, followed by resource id (enclosed in literal

 square brackets), and optional value (prepended by a literal

 colon). The following resource types are currently supported: mnt,

 dev, veth, macvlan. Syntax depends on type. Note to restore exter?

 nal resources dealing with opened file descriptors (such as dumped

 with the help of --external file, tty, and unix options), option

 --inherit-fd should be used.

 --external mnt[name]:mountpoint

 Restore an external bind mount referenced in the image by name,

 bind-mounting it from the host mountpoint to a proper mount point.

 --external mnt[]

 Restore all external bind mounts (dumped with the help of --exter?

 nal mnt[] auto-detection).

 --external dev[name]:/dev/path

 Restore an external mount device, identified in the image by name,

 using the existing block device /dev/path.

 --external veth[inner_dev]:outer_dev@bridge

 Set the outer VETH device name (corresponding to inner_dev being

 restored) to outer_dev. If optional @bridge is specified, outer_dev

 is added to that bridge. If the option is not used, outer_dev will

 be autogenerated by the kernel.

 --external macvlan[inner_dev]:outer_dev

 When restoring an image that have a MacVLAN device in it, this op?

 tion must be used to specify to which outer_dev (an existing net?

 work device in CRIU namespace) the restored inner_dev should be

 bound to.

 -J, --join-ns NS:{PID|NS_FILE}[,EXTRA_OPTS]

 Restore process tree inside an existing namespace. The namespace

 can be specified in PID or NS_FILE path format (example: --join-ns Page 12/21

 net:12345 or --join-ns net:/foo/bar). Currently supported values

 for NS are: ipc, net, time, user, and uts. This option doesn?t sup?

 port joining a PID namespace, however, this is possible using --ex?

 ternal and --inheritfd. EXTRA_OPTS is optional and can be used to

 specify UID and GID for user namespace (e.g., --join-ns

 user:PID,UID,GID).

 --manage-cgroups [mode]

 Restore cgroups configuration associated with a task from the im?

 age. Controllers are always restored in an optimistic way ? if al?

 ready present in system, criu reuses it, otherwise it will be cre?

 ated.

 The mode may be one of the following:

 none

 Do not restore cgroup properties but require cgroup to pre-ex?

 ist at the moment of restore procedure.

 props

 Restore cgroup properties and require cgroup to pre-exist.

 soft

 Restore cgroup properties if only cgroup has been created by

 criu, otherwise do not restore properties. This is the default

 if mode is unspecified.

 full

 Always restore all cgroups and their properties.

 strict

 Restore all cgroups and their properties from the scratch, re?

 quiring them to not present in the system.

 ignore

 Don?t deal with cgroups and pretend that they don?t exist.

 --cgroup-yard path

 Instead of trying to mount cgroups in CRIU, provide a path to a di?

 rectory with already created cgroup yard. For more information look

 in the dump section.

 --cgroup-root [controller:]/newroot Page 13/21

 Change the root cgroup the controller will be installed into. No

 controller means that root is the default for all controllers not

 specified.

 --tcp-established

 Restore previously dumped established TCP connections. This implies

 that the network has been locked between dump and restore phases so

 other side of a connection simply notice a kind of lag.

 --tcp-close

 Restore connected TCP sockets in closed state.

 --veth-pair IN=OUT

 Correspondence between outside and inside names of veth devices.

 -l, --file-locks

 Restore file locks from the image.

 --lsm-profile type:name

 Specify an LSM profile to be used during restore. The type can be

 either apparmor or selinux.

 --lsm-mount-context context

 Specify a new mount context to be used during restore.

 This option will only replace existing mount context information

 with the one specified with this option. Mounts without the con?

 text= option will not be changed.

 If a mountpoint has been checkpointed with an option like

 context="system_u:object_r:container_file_t:s0:c82,c137"

 it is possible to change this option using

 --lsm-mount-context "system_u:object_r:container_file_t:s0:c204,c495"

 which will result that the mountpoint will be restored with the new

 context=.

 This option is useful if using selinux and if the selinux labels

 need to be changed on restore like if a container is restored into

 an existing Pod.

 --auto-dedup

 As soon as a page is restored it get punched out from image.

 -j, --shell-job Page 14/21

 Restore shell jobs, in other words inherit session and process

 group ID from the criu itself.

 --cpu-cap [cap[,cap...]]

 Specify CPU capabilities to be present on the CPU the process is

 restoring. To inverse a capability, prefix it with ^. This option

 implies that --cpu-cap has been passed on dump as well, except fpu

 option case. The cap argument can be the following (or a set of

 comma-separated values):

 all

 Require all capabilities. This is default mode if --cpu-cap is

 passed without arguments. Most safe mode.

 cpu

 Require the CPU to have all capabilities in image to match run?

 time CPU.

 fpu

 Require the CPU to have compatible FPU. For example the process

 might be dumped with xsave capability but attempted to restore

 without it present on target CPU. In such case we refuse to

 proceed. This is default mode if --cpu-cap is not present in

 command line. Note this argument might be passed even if on the

 dump no --cpu-cap have been specified because FPU frames are

 always encoded into images.

 ins

 Require CPU compatibility on instructions level.

 none

 Ignore capabilities. Most dangerous mode. The behaviour is im?

 plementation dependent. Try to not use it until really re?

 quired.

 For example, this option can be used in case --cpu-cap=cpu was

 used during dump, and images are migrated to a less capable CPU

 and are to be restored. By default, criu shows an error that

 CPU capabilities are not adequate, but this can be suppressed

 by using --cpu-cap=none. Page 15/21

 --weak-sysctls

 Silently skip restoring sysctls that are not available. This allows

 to restore on an older kernel, or a kernel configured without some

 options.

 --lazy-pages

 Restore the processes without filling out the entire memory con?

 tents. When this option is used, restore sets up the infrastructure

 required to fill memory pages either on demand when the process ac?

 cesses them or in the background without stopping the restored

 process. This option requires running lazy-pages daemon.

 --file-validation [mode]

 Set the method to be used to validate open files. Validation is

 done to ensure that the version of the file being restored is the

 same version when it was dumped.

 The mode may be one of the following:

 filesize

 To explicitly use only the file size check all the time. This

 is the fastest and least intensive check.

 buildid

 To validate ELF files with their build-ID. If the build-ID can?

 not be obtained, chksm-first method will be used. This is the

 default if mode is unspecified.

 check

 Checks whether the kernel supports the features needed by criu to dump

 and restore a process tree.

 There are three categories of kernel support, as described below. criu

 check always checks Category 1 features unless --feature is specified

 which only checks a specified feature.

 Category 1

 Absolutely required. These are features like support for

 /proc/PID/map_files, NETLINK_SOCK_DIAG socket monitoring,

 /proc/sys/kernel/ns_last_pid etc.

 Category 2 Page 16/21

 Required only for specific cases. These are features like AIO

 remap, /dev/net/tun and others that are only required if a process

 being dumped or restored is using those.

 Category 3

 Experimental. These are features like task-diag that are used for

 experimental purposes (mostly during development).

 If there are no errors or warnings, criu prints "Looks good." and its

 exit code is 0.

 A missing Category 1 feature causes criu to print "Does not look good."

 and its exit code is non-zero.

 Missing Category 2 and 3 features cause criu to print "Looks good but

 ..." and its exit code is be non-zero.

 Without any options, criu check checks Category 1 features. This behav?

 ior can be changed by using the following options:

 --extra

 Check kernel support for Category 2 features.

 --experimental

 Check kernel support for Category 3 features.

 --all

 Check kernel support for Category 1, 2, and 3 features.

 --feature name

 Check a specific feature. If name is list, a list of valid kernel

 feature names that can be checked will be printed.

 page-server

 Launches criu in page server mode.

 --daemon

 Runs page server as a daemon (background process).

 --status-fd

 Write \0 to the FD and close it once page-server is ready to handle

 requests. The status-fd allows to not daemonize a process and get

 its exit code at the end. It isn?t supposed to use --daemon and

 --status-fd together.

 --address address Page 17/21

 Page server IP address or hostname.

 --port number

 Page server port number.

 --ps-socket fd

 Use provided file descriptor as socket for incoming connection. In

 this case --address and --port are ignored. Useful for intercepting

 page-server traffic e.g. to add encryption or authentication.

 --lazy-pages

 Serve local memory dump to a remote lazy-pages daemon. In this mode

 the page-server reads local memory dump and allows the remote

 lazy-pages daemon to request memory pages in random order.

 --tls-cacert file

 Specifies the path to a trusted Certificate Authority (CA) certifi?

 cate file to be used for verification of a client or server cer?

 tificate. The file must be in PEM format. When this option is used

 only the specified CA is used for verification. Otherwise, the sys?

 tem?s trusted CAs and, if present, /etc/pki/CA/cacert.pem will be

 used.

 --tls-cacrl file

 Specifies a path to a Certificate Revocation List (CRL) file which

 contains a list of revoked certificates that should no longer be

 trusted. The file must be in PEM format. When this option is not

 specified, the file, if present, /etc/pki/CA/cacrl.pem will be

 used.

 --tls-cert file

 Specifies a path to a file that contains a X.509 certificate to

 present to the remote entity. The file must be in PEM format. When

 this option is not specified, the default location

 (/etc/pki/criu/cert.pem) will be used.

 --tls-key file

 Specifies a path to a file that contains TLS private key. The file

 must be in PEM format. When this option is not the default location

 (/etc/pki/criu/private/key.pem) will be used. Page 18/21

 --tls

 Use TLS to secure remote connections.

 lazy-pages

 Launches criu in lazy-pages daemon mode.

 The lazy-pages daemon is responsible for managing user-level demand

 paging for the restored processes. It gets information required to fill

 the process memory pages from the restore and from the checkpoint di?

 rectory. When a restored process access certain memory page for the

 first time, the lazy-pages daemon injects its contents into the process

 address space. The memory pages that are not yet requested by the re?

 stored processes are injected in the background.

 exec

 Executes a system call inside a destination task's context. This func?

 tionality is deprecated; please use Compel instead.

 service

 Launches criu in RPC daemon mode, where criu is listening for RPC com?

 mands over socket to perform. This is convenient for a case where dae?

 mon itself is running in a privileged (superuser) mode but clients are

 not.

 dedup

 Starts pagemap data deduplication procedure, where criu scans over all

 pagemap files and tries to minimize the number of pagemap entries by

 obtaining the references from a parent pagemap image.

 cpuinfo dump

 Fetches current CPU features and write them into an image file.

 cpuinfo check

 Fetches current CPU features (i.e. CPU the criu is running on) and test

 if they are compatible with the ones present in an image file.

CONFIGURATION FILES

 Criu supports usage of configuration files to avoid the need of writing

 every option on command line, which is useful especially with repeated

 usage of same options. A specific configuration file can be passed with

 the "--config file" option. If no file is passed, the default configu? Page 19/21

 ration files /etc/criu/default.conf and $HOME/.criu/default.conf are

 parsed (if present on the system). If the environment variable

 CRIU_CONFIG_FILE is set, it will also be parsed.

 The options passed to CRIU via CLI, RPC or configuration file are eval?

 uated in the following order:

 ? apply_config(/etc/criu/default.conf)

 ? apply_config($HOME/.criu/default.conf)

 ? apply_config(CRIU_CONFIG_FILE)

 ? apply_config(--config file)

 ? apply_config(CLI) or apply_config(RPC)

 ? apply_config(RPC configuration file) (only for RPC mode)

 Default configuration file parsing can be deactivated with "--no-de?

 fault-config" if needed. Parsed configuration files are merged with

 command line options, which allows overriding boolean options.

 Configuration file syntax

 Comments are supported using '#' sign. The rest of the line is ignored.

 Options are the same as command line options without the '--' prefix,

 use one option per line (with corresponding argument if applicable, di?

 vided by whitespaces). If needed, the argument can be provided in dou?

 ble quotes (this should be needed only if the argument contains white?

 spaces). In case this type of argument contains a literal double quote

 as well, it can be escaped using the '\' sign. Usage of commands is

 disallowed and all other escape sequences are interpreted literally.

 Example of configuration file to illustrate syntax:

 $ cat ~/.criu/default.conf

 tcp-established

 work-dir "/home/USERNAME/criu/my \"work\" directory"

 #this is a comment

 no-restore-sibling # this is another comment

 Configuration files in RPC mode

 Not only does criu evaluate configuration files in CLI mode, it also

 evaluates configuration files in RPC mode. Just as in CLI mode the con?

 figuration file values are evaluated first. This means that any option Page 20/21

 set via RPC will overwrite the configuration file setting. The user can

 thus change criu's default behavior but it is not possible to change

 settings which are explicitly set by the RPC client.

 The RPC client can, however, specify an additional configuration file

 which will be evaluated after the RPC options (see above for option

 evaluation order). The RPC client can specify this additional configu?

 ration file via "req.opts.config_file = /path/to/file". The values from

 this configuration file will overwrite all other configuration file

 settings or RPC options. This can lead to undesired behavior of criu

 and should only be used carefully.

EXAMPLES

 To checkpoint a program with pid of 1234 and write all image files into

 directory checkpoint:

 criu dump -D checkpoint -t 1234

 To restore this program detaching criu itself:

 criu restore -d -D checkpoint

AUTHOR

 The CRIU team.

COPYRIGHT

 Copyright (C) 2011-2016, Parallels Holdings, Inc.

criu 3.17 05/11/2023 CRIU(8)

Page 21/21

