
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'credentials.7' command

$ man credentials.7

CREDENTIALS(7) Linux Programmer's Manual CREDENTIALS(7)

NAME

 credentials - process identifiers

DESCRIPTION

 Process ID (PID)

 Each process has a unique nonnegative integer identifier that is as?

 signed when the process is created using fork(2). A process can obtain

 its PID using getpid(2). A PID is represented using the type pid_t

 (defined in <sys/types.h>).

 PIDs are used in a range of system calls to identify the process af?

 fected by the call, for example: kill(2), ptrace(2), setpriority(2)

 setpgid(2), setsid(2), sigqueue(3), and waitpid(2).

 A process's PID is preserved across an execve(2).

 Parent process ID (PPID)

 A process's parent process ID identifies the process that created this

 process using fork(2). A process can obtain its PPID using getppid(2).

 A PPID is represented using the type pid_t.

 A process's PPID is preserved across an execve(2).

 Process group ID and session ID

 Each process has a session ID and a process group ID, both represented

 using the type pid_t. A process can obtain its session ID using get?

 sid(2), and its process group ID using getpgrp(2).

 A child created by fork(2) inherits its parent's session ID and process Page 1/6

 group ID. A process's session ID and process group ID are preserved

 across an execve(2).

 Sessions and process groups are abstractions devised to support shell

 job control. A process group (sometimes called a "job") is a collec?

 tion of processes that share the same process group ID; the shell cre?

 ates a new process group for the process(es) used to execute single

 command or pipeline (e.g., the two processes created to execute the

 command "ls | wc" are placed in the same process group). A process's

 group membership can be set using setpgid(2). The process whose

 process ID is the same as its process group ID is the process group

 leader for that group.

 A session is a collection of processes that share the same session ID.

 All of the members of a process group also have the same session ID

 (i.e., all of the members of a process group always belong to the same

 session, so that sessions and process groups form a strict two-level

 hierarchy of processes.) A new session is created when a process calls

 setsid(2), which creates a new session whose session ID is the same as

 the PID of the process that called setsid(2). The creator of the ses?

 sion is called the session leader.

 All of the processes in a session share a controlling terminal. The

 controlling terminal is established when the session leader first opens

 a terminal (unless the O_NOCTTY flag is specified when calling

 open(2)). A terminal may be the controlling terminal of at most one

 session.

 At most one of the jobs in a session may be the foreground job; other

 jobs in the session are background jobs. Only the foreground job may

 read from the terminal; when a process in the background attempts to

 read from the terminal, its process group is sent a SIGTTIN signal,

 which suspends the job. If the TOSTOP flag has been set for the termi?

 nal (see termios(3)), then only the foreground job may write to the

 terminal; writes from background job cause a SIGTTOU signal to be gen?

 erated, which suspends the job. When terminal keys that generate a

 signal (such as the interrupt key, normally control-C) are pressed, the Page 2/6

 signal is sent to the processes in the foreground job.

 Various system calls and library functions may operate on all members

 of a process group, including kill(2), killpg(3), getpriority(2), set?

 priority(2), ioprio_get(2), ioprio_set(2), waitid(2), and waitpid(2).

 See also the discussion of the F_GETOWN, F_GETOWN_EX, F_SETOWN, and

 F_SETOWN_EX operations in fcntl(2).

 User and group identifiers

 Each process has various associated user and group IDs. These IDs are

 integers, respectively represented using the types uid_t and gid_t (de?

 fined in <sys/types.h>).

 On Linux, each process has the following user and group identifiers:

 * Real user ID and real group ID. These IDs determine who owns the

 process. A process can obtain its real user (group) ID using ge?

 tuid(2) (getgid(2)).

 * Effective user ID and effective group ID. These IDs are used by the

 kernel to determine the permissions that the process will have when

 accessing shared resources such as message queues, shared memory,

 and semaphores. On most UNIX systems, these IDs also determine the

 permissions when accessing files. However, Linux uses the filesys?

 tem IDs described below for this task. A process can obtain its ef?

 fective user (group) ID using geteuid(2) (getegid(2)).

 * Saved set-user-ID and saved set-group-ID. These IDs are used in

 set-user-ID and set-group-ID programs to save a copy of the corre?

 sponding effective IDs that were set when the program was executed

 (see execve(2)). A set-user-ID program can assume and drop privi?

 leges by switching its effective user ID back and forth between the

 values in its real user ID and saved set-user-ID. This switching is

 done via calls to seteuid(2), setreuid(2), or setresuid(2). A set-

 group-ID program performs the analogous tasks using setegid(2), se?

 tregid(2), or setresgid(2). A process can obtain its saved set-

 user-ID (set-group-ID) using getresuid(2) (getresgid(2)).

 * Filesystem user ID and filesystem group ID (Linux-specific). These

 IDs, in conjunction with the supplementary group IDs described be? Page 3/6

 low, are used to determine permissions for accessing files; see

 path_resolution(7) for details. Whenever a process's effective user

 (group) ID is changed, the kernel also automatically changes the

 filesystem user (group) ID to the same value. Consequently, the

 filesystem IDs normally have the same values as the corresponding

 effective ID, and the semantics for file-permission checks are thus

 the same on Linux as on other UNIX systems. The filesystem IDs can

 be made to differ from the effective IDs by calling setfsuid(2) and

 setfsgid(2).

 * Supplementary group IDs. This is a set of additional group IDs that

 are used for permission checks when accessing files and other shared

 resources. On Linux kernels before 2.6.4, a process can be a member

 of up to 32 supplementary groups; since kernel 2.6.4, a process can

 be a member of up to 65536 supplementary groups. The call

 sysconf(_SC_NGROUPS_MAX) can be used to determine the number of sup?

 plementary groups of which a process may be a member. A process can

 obtain its set of supplementary group IDs using getgroups(2).

 A child process created by fork(2) inherits copies of its parent's user

 and groups IDs. During an execve(2), a process's real user and group

 ID and supplementary group IDs are preserved; the effective and saved

 set IDs may be changed, as described in execve(2).

 Aside from the purposes noted above, a process's user IDs are also em?

 ployed in a number of other contexts:

 * when determining the permissions for sending signals (see kill(2));

 * when determining the permissions for setting process-scheduling pa?

 rameters (nice value, real time scheduling policy and priority, CPU

 affinity, I/O priority) using setpriority(2), sched_setaffinity(2),

 sched_setscheduler(2), sched_setparam(2), sched_setattr(2), and io?

 prio_set(2);

 * when checking resource limits (see getrlimit(2));

 * when checking the limit on the number of inotify instances that the

 process may create (see inotify(7)).

 Modifying process user and group IDs Page 4/6

 Subject to rules described in the relevant manual pages, a process can

 use the following APIs to modify its user and group IDs:

 setuid(2) (setgid(2))

 Modify the process's real (and possibly effective and saved-set)

 user (group) IDs.

 seteuid(2) (setegid(2))

 Modify the process's effective user (group) ID.

 setfsuid(2) (setfsgid(2))

 Modify the process's filesystem user (group) ID.

 setreuid(2) (setregid(2))

 Modify the process's real and effective (and possibly saved-set)

 user (group) IDs.

 setresuid(2) (setresgid(2))

 Modify the process's real, effective, and saved-set user (group)

 IDs.

 setgroups(2)

 Modify the process's supplementary group list.

 Any changes to a process's effective user (group) ID are automatically

 carried over to the process's filesystem user (group) ID. Changes to a

 process's effective user or group ID can also affect the process

 "dumpable" attribute, as described in prctl(2).

 Changes to process user and group IDs can affect the capabilities of

 the process, as described in capabilities(7).

CONFORMING TO

 Process IDs, parent process IDs, process group IDs, and session IDs are

 specified in POSIX.1. The real, effective, and saved set user and

 groups IDs, and the supplementary group IDs, are specified in POSIX.1.

 The filesystem user and group IDs are a Linux extension.

NOTES

 Various fields in the /proc/[pid]/status file show the process creden?

 tials described above. See proc(5) for further information.

 The POSIX threads specification requires that credentials are shared by

 all of the threads in a process. However, at the kernel level, Linux Page 5/6

 maintains separate user and group credentials for each thread. The

 NPTL threading implementation does some work to ensure that any change

 to user or group credentials (e.g., calls to setuid(2), setresuid(2))

 is carried through to all of the POSIX threads in a process. See

 nptl(7) for further details.

SEE ALSO

 bash(1), csh(1), groups(1), id(1), newgrp(1), ps(1), runuser(1), set?

 priv(1), sg(1), su(1), access(2), execve(2), faccessat(2), fork(2),

 getgroups(2), getpgrp(2), getpid(2), getppid(2), getsid(2), kill(2),

 setegid(2), seteuid(2), setfsgid(2), setfsuid(2), setgid(2), set?

 groups(2), setpgid(2), setresgid(2), setresuid(2), setsid(2), se?

 tuid(2), waitpid(2), euidaccess(3), initgroups(3), killpg(3), tcgetp?

 grp(3), tcgetsid(3), tcsetpgrp(3), group(5), passwd(5), shadow(5), ca?

 pabilities(7), namespaces(7), path_resolution(7), pid_namespaces(7),

 pthreads(7), signal(7), system_data_types(7), unix(7), user_name?

 spaces(7), sudo(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CREDENTIALS(7)

Page 6/6

