
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'cpio.5' command

$ man cpio.5

CPIO(5) BSD File Formats Manual CPIO(5)

NAME

 cpio ? format of cpio archive files

DESCRIPTION

 The cpio archive format collects any number of files, directories, and

 other file system objects (symbolic links, device nodes, etc.) into a

 single stream of bytes.

 General Format

 Each file system object in a cpio archive comprises a header record with

 basic numeric metadata followed by the full pathname of the entry and the

 file data. The header record stores a series of integer values that gen?

 erally follow the fields in struct stat. (See stat(2) for details.) The

 variants differ primarily in how they store those integers (binary, oc?

 tal, or hexadecimal). The header is followed by the pathname of the en?

 try (the length of the pathname is stored in the header) and any file

 data. The end of the archive is indicated by a special record with the

 pathname ?TRAILER!!!?.

 PWB format

 The PWB binary cpio format is the original format, when cpio was intro? Page 1/10

 duced as part of the Programmer's Work Bench system, a variant of 6th

 Edition UNIX. It stores numbers as 2-byte and 4-byte binary values.

 Each entry begins with a header in the following format:

 struct header_pwb_cpio {

 short h_magic;

 short h_dev;

 short h_ino;

 short h_mode;

 short h_uid;

 short h_gid;

 short h_nlink;

 short h_majmin;

 long h_mtime;

 short h_namesize;

 long h_filesize;

 };

 The short fields here are 16-bit integer values, while the long fields

 are 32 bit integers. Since PWB UNIX, like the 6th Edition UNIX it was

 based on, only ran on PDP-11 computers, they are in PDP-endian format,

 which has little-endian shorts, and big-endian longs. That is, the long

 integer whose hexadecimal representation is 0x12345678 would be stored in

 four successive bytes as 0x34, 0x12, 0x78, 0x56. The fields are as fol?

 lows:

 h_magic

 The integer value octal 070707.

 h_dev, h_ino

 The device and inode numbers from the disk. These are used by

 programs that read cpio archives to determine when two entries

 refer to the same file. Programs that synthesize cpio archives Page 2/10

 should be careful to set these to distinct values for each entry.

 h_mode The mode specifies both the regular permissions and the file

 type, and it also holds a couple of bits that are irrelevant to

 the cpio format, because the field is actually a raw copy of the

 mode field in the inode representing the file. These are the

 IALLOC flag, which shows that the inode entry is in use, and the

 ILARG flag, which shows that the file it represents is large

 enough to have indirect blocks pointers in the inode. The mode

 is decoded as follows:

 0100000 IALLOC flag - irrelevant to cpio.

 0060000 This masks the file type bits.

 0040000 File type value for directories.

 0020000 File type value for character special devices.

 0060000 File type value for block special devices.

 0010000 ILARG flag - irrelevant to cpio.

 0004000 SUID bit.

 0002000 SGID bit.

 0001000 Sticky bit.

 0000777 The lower 9 bits specify read/write/execute permissions

 for world, group, and user following standard POSIX con?

 ventions.

 h_uid, h_gid

 The numeric user id and group id of the owner.

 h_nlink

 The number of links to this file. Directories always have a

 value of at least two here. Note that hardlinked files include

 file data with every copy in the archive.

 h_majmin Page 3/10

 For block special and character special entries, this field con?

 tains the associated device number, with the major number in the

 high byte, and the minor number in the low byte. For all other

 entry types, it should be set to zero by writers and ignored by

 readers.

 h_mtime

 Modification time of the file, indicated as the number of seconds

 since the start of the epoch, 00:00:00 UTC January 1, 1970.

 h_namesize

 The number of bytes in the pathname that follows the header.

 This count includes the trailing NUL byte.

 h_filesize

 The size of the file. Note that this archive format is limited

 to 16 megabyte file sizes, because PWB UNIX, like 6th Edition,

 only used an unsigned 24 bit integer for the file size inter?

 nally.

 The pathname immediately follows the fixed header. If h_namesize is odd,

 an additional NUL byte is added after the pathname. The file data is

 then appended, again with an additional NUL appended if needed to get the

 next header at an even offset.

 Hardlinked files are not given special treatment; the full file contents

 are included with each copy of the file.

 New Binary Format

 The new binary cpio format showed up when cpio was adopted into late 7th

 Edition UNIX. It is exactly like the PWB binary format, described above,

 except for three changes:

Page 4/10

 First, UNIX now ran on more than one hardware type, so the endianness of

 16 bit integers must be determined by observing the magic number at the

 start of the header. The 32 bit integers are still always stored with

 the most significant word first, though, so each of those two, in the

 struct shown above, was stored as an array of two 16 bit integers, in the

 traditional order. Those 16 bit integers, like all the others in the

 struct, were accessed using a macro that byte swapped them if necessary.

 Next, 7th Edition had more file types to store, and the IALLOC and ILARG

 flag bits were re-purposed to accommodate these. The revised use of the

 various bits is as follows:

 0170000 This masks the file type bits.

 0140000 File type value for sockets.

 0120000 File type value for symbolic links. For symbolic links, the

 link body is stored as file data.

 0100000 File type value for regular files.

 0060000 File type value for block special devices.

 0040000 File type value for directories.

 0020000 File type value for character special devices.

 0010000 File type value for named pipes or FIFOs.

 0004000 SUID bit.

 0002000 SGID bit.

 0001000 Sticky bit.

 0000777 The lower 9 bits specify read/write/execute permissions for

 world, group, and user following standard POSIX conventions.

 Finally, the file size field now represents a signed 32 bit integer in

 the underlying file system, so the maximum file size has increased to 2

 gigabytes.

 Note that there is no obvious way to tell which of the two binary formats

 an archive uses, other than to see which one makes more sense. The typi? Page 5/10

 cal error scenario is that a PWB format archive unpacked as if it were in

 the new format will create named sockets instead of directories, and then

 fail to unpack files that should go in those directories. Running

 bsdcpio -itv on an unknown archive will make it obvious which it is: if

 it's PWB format, directories will be listed with an 's' instead of a 'd'

 as the first character of the mode string, and the larger files will have

 a '?' in that position.

 Portable ASCII Format

 Version 2 of the Single UNIX Specification (?SUSv2?) standardized an

 ASCII variant that is portable across all platforms. It is commonly

 known as the ?old character? format or as the ?odc? format. It stores

 the same numeric fields as the old binary format, but represents them as

 6-character or 11-character octal values.

 struct cpio_odc_header {

 char c_magic[6];

 char c_dev[6];

 char c_ino[6];

 char c_mode[6];

 char c_uid[6];

 char c_gid[6];

 char c_nlink[6];

 char c_rdev[6];

 char c_mtime[11];

 char c_namesize[6];

 char c_filesize[11];

 };

 The fields are identical to those in the new binary format. The name and

 file body follow the fixed header. Unlike the binary formats, there is

 no additional padding after the pathname or file contents. If the files

 being archived are themselves entirely ASCII, then the resulting archive Page 6/10

 will be entirely ASCII, except for the NUL byte that terminates the name

 field.

 New ASCII Format

 The "new" ASCII format uses 8-byte hexadecimal fields for all numbers and

 separates device numbers into separate fields for major and minor num?

 bers.

 struct cpio_newc_header {

 char c_magic[6];

 char c_ino[8];

 char c_mode[8];

 char c_uid[8];

 char c_gid[8];

 char c_nlink[8];

 char c_mtime[8];

 char c_filesize[8];

 char c_devmajor[8];

 char c_devminor[8];

 char c_rdevmajor[8];

 char c_rdevminor[8];

 char c_namesize[8];

 char c_check[8];

 };

 Except as specified below, the fields here match those specified for the

 new binary format above.

 magic The string ?070701?.

 check This field is always set to zero by writers and ignored by read?

 ers. See the next section for more details.

Page 7/10

 The pathname is followed by NUL bytes so that the total size of the fixed

 header plus pathname is a multiple of four. Likewise, the file data is

 padded to a multiple of four bytes. Note that this format supports only

 4 gigabyte files (unlike the older ASCII format, which supports 8 giga?

 byte files).

 In this format, hardlinked files are handled by setting the filesize to

 zero for each entry except the first one that appears in the archive.

 New CRC Format

 The CRC format is identical to the new ASCII format described in the pre?

 vious section except that the magic field is set to ?070702? and the

 check field is set to the sum of all bytes in the file data. This sum is

 computed treating all bytes as unsigned values and using unsigned arith?

 metic. Only the least-significant 32 bits of the sum are stored.

 HP variants

 The cpio implementation distributed with HPUX used XXXX but stored device

 numbers differently XXX.

 Other Extensions and Variants

 Sun Solaris uses additional file types to store extended file data, in?

 cluding ACLs and extended attributes, as special entries in cpio ar?

 chives.

 XXX Others? XXX

SEE ALSO

 cpio(1), tar(5)

STANDARDS

 The cpio utility is no longer a part of POSIX or the Single Unix Stan?

 dard. It last appeared in Version 2 of the Single UNIX Specification Page 8/10

 (?SUSv2?). It has been supplanted in subsequent standards by pax(1).

 The portable ASCII format is currently part of the specification for the

 pax(1) utility.

HISTORY

 The original cpio utility was written by Dick Haight while working in

 AT&T's Unix Support Group. It appeared in 1977 as part of PWB/UNIX 1.0,

 the ?Programmer's Work Bench? derived from AT&T UNIX 6th Edition UNIX

 that was used internally at AT&T. Both the new binary and old character

 formats were in use by 1980, according to the System III source released

 by SCO under their ?Ancient Unix? license. The character format was

 adopted as part of IEEE Std 1003.1-1988 (?POSIX.1?). XXX when did "newc"

 appear? Who invented it? When did HP come out with their variant? When

 did Sun introduce ACLs and extended attributes? XXX

BUGS

 The ?CRC? format is mis-named, as it uses a simple checksum and not a

 cyclic redundancy check.

 The binary formats are limited to 16 bits for user id, group id, device,

 and inode numbers. They are limited to 16 megabyte and 2 gigabyte file

 sizes for the older and newer variants, respectively.

 The old ASCII format is limited to 18 bits for the user id, group id, de?

 vice, and inode numbers. It is limited to 8 gigabyte file sizes.

 The new ASCII format is limited to 4 gigabyte file sizes.

 None of the cpio formats store user or group names, which are essential

 when moving files between systems with dissimilar user or group number?

 ing.

 Especially when writing older cpio variants, it may be necessary to map Page 9/10

 actual device/inode values to synthesized values that fit the available

 fields. With very large filesystems, this may be necessary even for the

 newer formats.

BSD December 23, 2011 BSD

Page 10/10

