
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'containers-auth.json.5' command

$ man containers-auth.json.5

containers-auth.json(5) File Formats Manual containers-auth.json(5)

NAME

 containers-auth.json - syntax for the registry authentication file

DESCRIPTION

 A credentials file in JSON format used to authenticate against con?

 tainer image registries. The primary (read/write) file is stored at

 ${XDG_RUNTIME_DIR}/containers/auth.json on Linux; on Windows and macOS,

 at $HOME/.config/containers/auth.json.

 When searching for the credential for a registry, the following files

 will be read in sequence until the valid credential is found: first

 reading the primary (read/write) file, or the explicit override using

 an option of the calling application. If credentials are not present,

 search in ${XDG_CONFIG_HOME}/containers/auth.json (usually ~/.con?

 fig/containers/auth.json), $HOME/.docker/config.json, $HOME/.dockercfg.

 Except the primary (read/write) file, other files are read-only, unless

 the user use an option of the calling application explicitly points at

 it as an override.

FORMAT

 The auth.json file stores encrypted authentication information for the

 user to container image registries. The file can have zero to many en?

 tries and is created by a login command from a container tool such as

 podman login, buildah login or skopeo login. Each entry either contains

 a single hostname (e.g. docker.io) or a namespace (e.g. Page 1/4

 quay.io/user/image) as a key and an auth token in the form of a base64

 encoded string as value of auth. The token is built from the concatena?

 tion of the username, a colon, and the password. The registry name can

 additionally contain a repository name (an image name without tag or

 digest) and namespaces. The path (or namespace) is matched in its hier?

 archical order when checking for available authentications. For exam?

 ple, an image pull for my-registry.local/namespace/user/image:latest

 will result in a lookup in auth.json in the following order:

 ? my-registry.local/namespace/user/image

 ? my-registry.local/namespace/user

 ? my-registry.local/namespace

 ? my-registry.local

 This way it is possible to setup multiple credentials for a single reg?

 istry which can be distinguished by their path.

 The following example shows the values found in auth.json after the

 user logged in to their accounts on quay.io and docker.io:

 {

 "auths": {

 "docker.io": {

 "auth": "erfi7sYi89234xJUqaqxgmzcnQ2rRFWM5aJX0EC="

 },

 "quay.io": {

 "auth": "juQAqGmz5eR1ipzx8Evn6KGdw8fEa1w5MWczmgY="

 }

 }

 }

 This example demonstrates how to use multiple paths for a single reg?

 istry, while preserving a fallback for my-registry.local:

 {

 "auths": {

 "my-registry.local/foo/bar/image": {

 "auth": "?"

 }, Page 2/4

 "my-registry.local/foo": {

 "auth": "?"

 },

 "my-registry.local": {

 "auth": "?"

 },

 }

 }

 An entry can be removed by using a logout command from a container tool

 such as podman logout or buildah logout.

 In addition, credential helpers can be configured for specific reg?

 istries and the credentials-helper software can be used to manage the

 credentials in a more secure way than depending on the base64 encoded

 authentication provided by login. If the credential helpers are con?

 figured for specific registries, the base64 encoded authentication will

 not be used for operations concerning credentials of the specified reg?

 istries.

 When the credential helper is in use on a Linux platform, the auth.json

 file would contain keys that specify the registry domain, and values

 that specify the suffix of the program to use (i.e. everything after

 docker-credential-). For example:

 {

 "auths": {

 "localhost:5001": {}

 },

 "credHelpers": {

 "registry.example.com": "secretservice"

 }

 }

 For more information on credential helpers, please reference the GitHub

 docker-credential-helpers project ?https://github.com/docker/docker-

 credential-helpers/releases?.

SEE ALSO Page 3/4

 buildah-login(1), buildah-logout(1), podman-login(1), podman-logout(1), skopeo-login(1), skopeo-logout(1)

HISTORY

 Feb 2020, Originally compiled by Tom Sweeney tsweeney@redhat.com

 ?mailto:tsweeney@redhat.com?

 containers-auth.json(5)

Page 4/4

