
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'console_codes.4' command

$ man console_codes.4

CONSOLE_CODES(4) Linux Programmer's Manual CONSOLE_CODES(4)

NAME

 console_codes - Linux console escape and control sequences

DESCRIPTION

 The Linux console implements a large subset of the VT102 and

 ECMA-48/ISO 6429/ANSI X3.64 terminal controls, plus certain private-

 mode sequences for changing the color palette, character-set mapping,

 and so on. In the tabular descriptions below, the second column gives

 ECMA-48 or DEC mnemonics (the latter if prefixed with DEC) for the

 given function. Sequences without a mnemonic are neither ECMA-48 nor

 VT102.

 After all the normal output processing has been done, and a stream of

 characters arrives at the console driver for actual printing, the first

 thing that happens is a translation from the code used for processing

 to the code used for printing.

 If the console is in UTF-8 mode, then the incoming bytes are first as?

 sembled into 16-bit Unicode codes. Otherwise, each byte is transformed

 according to the current mapping table (which translates it to a Uni?

 code value). See the Character Sets section below for discussion.

 In the normal case, the Unicode value is converted to a font index, and

 this is stored in video memory, so that the corresponding glyph (as

 found in video ROM) appears on the screen. Note that the use of Uni?

 code (and the design of the PC hardware) allows us to use 512 different Page 1/14

 glyphs simultaneously.

 If the current Unicode value is a control character, or we are cur?

 rently processing an escape sequence, the value will treated specially.

 Instead of being turned into a font index and rendered as a glyph, it

 may trigger cursor movement or other control functions. See the Linux

 Console Controls section below for discussion.

 It is generally not good practice to hard-wire terminal controls into

 programs. Linux supports a terminfo(5) database of terminal capabili?

 ties. Rather than emitting console escape sequences by hand, you will

 almost always want to use a terminfo-aware screen library or utility

 such as ncurses(3), tput(1), or reset(1).

 Linux console controls

 This section describes all the control characters and escape sequences

 that invoke special functions (i.e., anything other than writing a

 glyph at the current cursor location) on the Linux console.

 Control characters

 A character is a control character if (before transformation according

 to the mapping table) it has one of the 14 codes 00 (NUL), 07 (BEL), 08

 (BS), 09 (HT), 0a (LF), 0b (VT), 0c (FF), 0d (CR), 0e (SO), 0f (SI), 18

 (CAN), 1a (SUB), 1b (ESC), 7f (DEL). One can set a "display control

 characters" mode (see below), and allow 07, 09, 0b, 18, 1a, 7f to be

 displayed as glyphs. On the other hand, in UTF-8 mode all codes 00?1f

 are regarded as control characters, regardless of any "display control

 characters" mode.

 If we have a control character, it is acted upon immediately and then

 discarded (even in the middle of an escape sequence) and the escape se?

 quence continues with the next character. (However, ESC starts a new

 escape sequence, possibly aborting a previous unfinished one, and CAN

 and SUB abort any escape sequence.) The recognized control characters

 are BEL, BS, HT, LF, VT, FF, CR, SO, SI, CAN, SUB, ESC, DEL, CSI. They

 do what one would expect:

 BEL (0x07, ^G) beeps;

 BS (0x08, ^H) backspaces one column (but not past the beginning of the Page 2/14

 line);

 HT (0x09, ^I) goes to the next tab stop or to the end of the line if

 there is no earlier tab stop;

 LF (0x0A, ^J), VT (0x0B, ^K) and FF (0x0C, ^L) all give a linefeed, and

 if LF/NL (new-line mode) is set also a carriage return;

 CR (0x0D, ^M) gives a carriage return;

 SO (0x0E, ^N) activates the G1 character set;

 SI (0x0F, ^O) activates the G0 character set;

 CAN (0x18, ^X) and SUB (0x1A, ^Z) abort escape sequences;

 ESC (0x1B, ^[) starts an escape sequence;

 DEL (0x7F) is ignored;

 CSI (0x9B) is equivalent to ESC [.

 ESC- but not CSI-sequences

 ESC c RIS Reset.

 ESC D IND Linefeed.

 ESC E NEL Newline.

 ESC H HTS Set tab stop at current column.

 ESC M RI Reverse linefeed.

 ESC Z DECID DEC private identification. The kernel returns the

 string ESC [? 6 c, claiming that it is a VT102.

 ESC 7 DECSC Save current state (cursor coordinates, at?

 tributes, character sets pointed at by G0, G1).

 ESC 8 DECRC Restore state most recently saved by ESC 7.

 ESC [CSI Control sequence introducer

 ESC % Start sequence selecting character set

 ESC % @ Select default (ISO 646 / ISO 8859-1)

 ESC % G Select UTF-8

 ESC % 8 Select UTF-8 (obsolete)

 ESC # 8 DECALN DEC screen alignment test - fill screen with E's.

 ESC (Start sequence defining G0 character set

 ESC (B Select default (ISO 8859-1 mapping)

 ESC (0 Select VT100 graphics mapping

 ESC (U Select null mapping - straight to character ROM Page 3/14

 ESC (K Select user mapping - the map that is loaded by

 the utility mapscrn(8).

 ESC) Start sequence defining G1

 (followed by one of B, 0, U, K, as above).

 ESC > DECPNM Set numeric keypad mode

 ESC = DECPAM Set application keypad mode

 ESC] OSC (Should be: Operating system command) ESC] P nr?

 rggbb: set palette, with parameter given in 7

 hexadecimal digits after the final P :-(. Here n

 is the color (0?15), and rrggbb indicates the

 red/green/blue values (0?255). ESC] R: reset

 palette

 ECMA-48 CSI sequences

 CSI (or ESC [) is followed by a sequence of parameters, at most NPAR

 (16), that are decimal numbers separated by semicolons. An empty or

 absent parameter is taken to be 0. The sequence of parameters may be

 preceded by a single question mark.

 However, after CSI [(or ESC [[) a single character is read and this

 entire sequence is ignored. (The idea is to ignore an echoed function

 key.)

 The action of a CSI sequence is determined by its final character.

 @ ICH Insert the indicated # of blank characters.

 A CUU Move cursor up the indicated # of rows.

 B CUD Move cursor down the indicated # of rows.

 C CUF Move cursor right the indicated # of columns.

 D CUB Move cursor left the indicated # of columns.

 E CNL Move cursor down the indicated # of rows, to column 1.

 F CPL Move cursor up the indicated # of rows, to column 1.

 G CHA Move cursor to indicated column in current row.

 H CUP Move cursor to the indicated row, column (origin at 1,1).

 J ED Erase display (default: from cursor to end of display).

 ESC [1 J: erase from start to cursor.

 ESC [2 J: erase whole display. Page 4/14

 ESC [3 J: erase whole display including scroll-back

 buffer (since Linux 3.0).

 K EL Erase line (default: from cursor to end of line).

 ESC [1 K: erase from start of line to cursor.

 ESC [2 K: erase whole line.

 L IL Insert the indicated # of blank lines.

 M DL Delete the indicated # of lines.

 P DCH Delete the indicated # of characters on current line.

 X ECH Erase the indicated # of characters on current line.

 a HPR Move cursor right the indicated # of columns.

 c DA Answer ESC [? 6 c: "I am a VT102".

 d VPA Move cursor to the indicated row, current column.

 e VPR Move cursor down the indicated # of rows.

 f HVP Move cursor to the indicated row, column.

 g TBC Without parameter: clear tab stop at current position.

 ESC [3 g: delete all tab stops.

 h SM Set Mode (see below).

 l RM Reset Mode (see below).

 m SGR Set attributes (see below).

 n DSR Status report (see below).

 q DECLL Set keyboard LEDs.

 ESC [0 q: clear all LEDs

 ESC [1 q: set Scroll Lock LED

 ESC [2 q: set Num Lock LED

 ESC [3 q: set Caps Lock LED

 r DECSTBM Set scrolling region; parameters are top and bottom row.

 s ? Save cursor location.

 u ? Restore cursor location.

 ` HPA Move cursor to indicated column in current row.

 ECMA-48 Set Graphics Rendition

 The ECMA-48 SGR sequence ESC [parameters m sets display attributes.

 Several attributes can be set in the same sequence, separated by semi?

 colons. An empty parameter (between semicolons or string initiator or Page 5/14

 terminator) is interpreted as a zero.

 param result

 0 reset all attributes to their defaults

 1 set bold

 2 set half-bright (simulated with color on a color display)

 4 set underscore (simulated with color on a color display)

 (the colors used to simulate dim or underline are set us?

 ing ESC] ...)

 5 set blink

 7 set reverse video

 10 reset selected mapping, display control flag, and toggle

 meta flag (ECMA-48 says "primary font").

 11 select null mapping, set display control flag, reset tog?

 gle meta flag (ECMA-48 says "first alternate font").

 12 select null mapping, set display control flag, set toggle

 meta flag (ECMA-48 says "second alternate font"). The

 toggle meta flag causes the high bit of a byte to be tog?

 gled before the mapping table translation is done.

 21 set underline; before Linux 4.17, this value set normal

 intensity (as is done in many other terminals)

 22 set normal intensity

 24 underline off

 25 blink off

 27 reverse video off

 30 set black foreground

 31 set red foreground

 32 set green foreground

 33 set brown foreground

 34 set blue foreground

 35 set magenta foreground

 36 set cyan foreground

 37 set white foreground

 38 256/24-bit foreground color follows, shoehorned into 16 Page 6/14

 basic colors (before Linux 3.16: set underscore on, set

 default foreground color)

 39 set default foreground color (before Linux 3.16: set un?

 derscore off, set default foreground color)

 40 set black background

 41 set red background

 42 set green background

 43 set brown background

 44 set blue background

 45 set magenta background

 46 set cyan background

 47 set white background

 48 256/24-bit background color follows, shoehorned into 8

 basic colors

 49 set default background color

 90..97 set foreground to bright versions of 30..37

 100.107 set background, same as 40..47 (bright not supported)

 Commands 38 and 48 require further arguments:

 ;5;x 256 color: values 0..15 are IBGR (black, red, green,

 ... white), 16..231 a 6x6x6 color cube, 232..255 a

 grayscale ramp

 ;2;r;g;b 24-bit color, r/g/b components are in the range 0..255

 ECMA-48 Mode Switches

 ESC [3 h

 DECCRM (default off): Display control chars.

 ESC [4 h

 DECIM (default off): Set insert mode.

 ESC [20 h

 LF/NL (default off): Automatically follow echo of LF, VT or FF

 with CR.

 ECMA-48 Status Report Commands

 ESC [5 n

 Device status report (DSR): Answer is ESC [0 n (Terminal OK). Page 7/14

 ESC [6 n

 Cursor position report (CPR): Answer is ESC [y ; x R, where x,y

 is the cursor location.

 DEC Private Mode (DECSET/DECRST) sequences

 These are not described in ECMA-48. We list the Set Mode sequences;

 the Reset Mode sequences are obtained by replacing the final 'h' by

 'l'.

 ESC [? 1 h

 DECCKM (default off): When set, the cursor keys send an ESC O

 prefix, rather than ESC [.

 ESC [? 3 h

 DECCOLM (default off = 80 columns): 80/132 col mode switch. The

 driver sources note that this alone does not suffice; some user-

 mode utility such as resizecons(8) has to change the hardware

 registers on the console video card.

 ESC [? 5 h

 DECSCNM (default off): Set reverse-video mode.

 ESC [? 6 h

 DECOM (default off): When set, cursor addressing is relative to

 the upper left corner of the scrolling region.

 ESC [? 7 h

 DECAWM (default on): Set autowrap on. In this mode, a graphic

 character emitted after column 80 (or column 132 of DECCOLM is

 on) forces a wrap to the beginning of the following line first.

 ESC [? 8 h

 DECARM (default on): Set keyboard autorepeat on.

 ESC [? 9 h

 X10 Mouse Reporting (default off): Set reporting mode to 1 (or

 reset to 0)?see below.

 ESC [? 25 h

 DECTECM (default on): Make cursor visible.

 ESC [? 1000 h

 X11 Mouse Reporting (default off): Set reporting mode to 2 (or Page 8/14

 reset to 0)?see below.

 Linux Console Private CSI Sequences

 The following sequences are neither ECMA-48 nor native VT102. They are

 native to the Linux console driver. Colors are in SGR parameters: 0 =

 black, 1 = red, 2 = green, 3 = brown, 4 = blue, 5 = magenta, 6 = cyan,

 7 = white; 8?15 = bright versions of 0?7.

 ESC [1 ; n] Set color n as the underline color.

 ESC [2 ; n] Set color n as the dim color.

 ESC [8] Make the current color pair the default attributes.

 ESC [9 ; n] Set screen blank timeout to n minutes.

 ESC [10 ; n] Set bell frequency in Hz.

 ESC [11 ; n] Set bell duration in msec.

 ESC [12 ; n] Bring specified console to the front.

 ESC [13] Unblank the screen.

 ESC [14 ; n] Set the VESA powerdown interval in minutes.

 ESC [15] Bring the previous console to the front (since

 Linux 2.6.0).

 ESC [16 ; n] Set the cursor blink interval in milliseconds

 (since Linux 4.2).

 Character sets

 The kernel knows about 4 translations of bytes into console-screen sym?

 bols. The four tables are: a) Latin1 -> PC, b) VT100 graphics -> PC,

 c) PC -> PC, d) user-defined.

 There are two character sets, called G0 and G1, and one of them is the

 current character set. (Initially G0.) Typing ^N causes G1 to become

 current, ^O causes G0 to become current.

 These variables G0 and G1 point at a translation table, and can be

 changed by the user. Initially they point at tables a) and b), respec?

 tively. The sequences ESC (B and ESC (0 and ESC (U and ESC (K

 cause G0 to point at translation table a), b), c) and d), respectively.

 The sequences ESC) B and ESC) 0 and ESC) U and ESC) K cause G1 to

 point at translation table a), b), c) and d), respectively.

 The sequence ESC c causes a terminal reset, which is what you want if Page 9/14

 the screen is all garbled. The oft-advised "echo ^V^O" will make only

 G0 current, but there is no guarantee that G0 points at table a). In

 some distributions there is a program reset(1) that just does "echo

 ^[c". If your terminfo entry for the console is correct (and has an

 entry rs1=\Ec), then "tput reset" will also work.

 The user-defined mapping table can be set using mapscrn(8). The result

 of the mapping is that if a symbol c is printed, the symbol s = map[c]

 is sent to the video memory. The bitmap that corresponds to s is found

 in the character ROM, and can be changed using setfont(8).

 Mouse tracking

 The mouse tracking facility is intended to return xterm(1)-compatible

 mouse status reports. Because the console driver has no way to know

 the device or type of the mouse, these reports are returned in the con?

 sole input stream only when the virtual terminal driver receives a

 mouse update ioctl. These ioctls must be generated by a mouse-aware

 user-mode application such as the gpm(8) daemon.

 The mouse tracking escape sequences generated by xterm(1) encode nu?

 meric parameters in a single character as value+040. For example, '!'

 is 1. The screen coordinate system is 1-based.

 The X10 compatibility mode sends an escape sequence on button press en?

 coding the location and the mouse button pressed. It is enabled by

 sending ESC [? 9 h and disabled with ESC [? 9 l. On button press,

 xterm(1) sends ESC [M bxy (6 characters). Here b is button-1, and x

 and y are the x and y coordinates of the mouse when the button was

 pressed. This is the same code the kernel also produces.

 Normal tracking mode (not implemented in Linux 2.0.24) sends an escape

 sequence on both button press and release. Modifier information is

 also sent. It is enabled by sending ESC [? 1000 h and disabled with

 ESC [? 1000 l. On button press or release, xterm(1) sends ESC [M

 bxy. The low two bits of b encode button information: 0=MB1 pressed,

 1=MB2 pressed, 2=MB3 pressed, 3=release. The upper bits encode what

 modifiers were down when the button was pressed and are added together:

 4=Shift, 8=Meta, 16=Control. Again x and y are the x and y coordinates Page 10/14

 of the mouse event. The upper left corner is (1,1).

 Comparisons with other terminals

 Many different terminal types are described, like the Linux console, as

 being "VT100-compatible". Here we discuss differences between the

 Linux console and the two most important others, the DEC VT102 and

 xterm(1).

 Control-character handling

 The VT102 also recognized the following control characters:

 NUL (0x00) was ignored;

 ENQ (0x05) triggered an answerback message;

 DC1 (0x11, ^Q, XON) resumed transmission;

 DC3 (0x13, ^S, XOFF) caused VT100 to ignore (and stop transmitting) all

 codes except XOFF and XON.

 VT100-like DC1/DC3 processing may be enabled by the terminal driver.

 The xterm(1) program (in VT100 mode) recognizes the control characters

 BEL, BS, HT, LF, VT, FF, CR, SO, SI, ESC.

 Escape sequences

 VT100 console sequences not implemented on the Linux console:

 ESC N SS2 Single shift 2. (Select G2 character set for the next

 character only.)

 ESC O SS3 Single shift 3. (Select G3 character set for the next

 character only.)

 ESC P DCS Device control string (ended by ESC \)

 ESC X SOS Start of string.

 ESC ^ PM Privacy message (ended by ESC \)

 ESC \ ST String terminator

 ESC * ... Designate G2 character set

 ESC + ... Designate G3 character set

 The program xterm(1) (in VT100 mode) recognizes ESC c, ESC # 8, ESC >,

 ESC =, ESC D, ESC E, ESC H, ESC M, ESC N, ESC O, ESC P ... ESC \, ESC Z

 (it answers ESC [? 1 ; 2 c, "I am a VT100 with advanced video option")

 and ESC ^ ... ESC \ with the same meanings as indicated above. It ac?

 cepts ESC (, ESC), ESC *, ESC + followed by 0, A, B for the DEC spe? Page 11/14

 cial character and line drawing set, UK, and US-ASCII, respectively.

 The user can configure xterm(1) to respond to VT220-specific control

 sequences, and it will identify itself as a VT52, VT100, and up depend?

 ing on the way it is configured and initialized.

 It accepts ESC] (OSC) for the setting of certain resources. In addi?

 tion to the ECMA-48 string terminator (ST), xterm(1) accepts a BEL to

 terminate an OSC string. These are a few of the OSC control sequences

 recognized by xterm(1):

 ESC] 0 ; txt ST Set icon name and window title to txt.

 ESC] 1 ; txt ST Set icon name to txt.

 ESC] 2 ; txt ST Set window title to txt.

 ESC] 4 ; num; txt ST Set ANSI color num to txt.

 ESC] 10 ; txt ST Set dynamic text color to txt.

 ESC] 4 6 ; name ST Change log file to name (normally disabled

 by a compile-time option)

 ESC] 5 0 ; fn ST Set font to fn.

 It recognizes the following with slightly modified meaning (saving more

 state, behaving closer to VT100/VT220):

 ESC 7 DECSC Save cursor

 ESC 8 DECRC Restore cursor

 It also recognizes

 ESC F Cursor to lower left corner of screen (if enabled by

 xterm(1)'s hpLowerleftBugCompat resource)

 ESC l Memory lock (per HP terminals).

 Locks memory above the cursor.

 ESC m Memory unlock (per HP terminals).

 ESC n LS2 Invoke the G2 character set.

 ESC o LS3 Invoke the G3 character set.

 ESC | LS3R Invoke the G3 character set as GR.

 ESC } LS2R Invoke the G2 character set as GR.

 ESC ~ LS1R Invoke the G1 character set as GR.

 It also recognizes ESC % and provides a more complete UTF-8 implementa?

 tion than Linux console. Page 12/14

 CSI Sequences

 Old versions of xterm(1), for example, from X11R5, interpret the blink

 SGR as a bold SGR. Later versions which implemented ANSI colors, for

 example, XFree86 3.1.2A in 1995, improved this by allowing the blink

 attribute to be displayed as a color. Modern versions of xterm imple?

 ment blink SGR as blinking text and still allow colored text as an al?

 ternate rendering of SGRs. Stock X11R6 versions did not recognize the

 color-setting SGRs until the X11R6.8 release, which incorporated

 XFree86 xterm. All ECMA-48 CSI sequences recognized by Linux are also

 recognized by xterm, however xterm(1) implements several ECMA-48 and

 DEC control sequences not recognized by Linux.

 The xterm(1) program recognizes all of the DEC Private Mode sequences

 listed above, but none of the Linux private-mode sequences. For dis?

 cussion of xterm(1)'s own private-mode sequences, refer to the Xterm

 Control Sequences document by Edward Moy, Stephen Gildea, and Thomas E.

 Dickey available with the X distribution. That document, though terse,

 is much longer than this manual page. For a chronological overview,

 ?http://invisible-island.net/xterm/xterm.log.html?

 details changes to xterm.

 The vttest program

 ?http://invisible-island.net/vttest/?

 demonstrates many of these control sequences. The xterm(1) source dis?

 tribution also contains sample scripts which exercise other features.

NOTES

 ESC 8 (DECRC) is not able to restore the character set changed with ESC

 %.

BUGS

 In 2.0.23, CSI is broken, and NUL is not ignored inside escape se?

 quences.

 Some older kernel versions (after 2.0) interpret 8-bit control se?

 quences. These "C1 controls" use codes between 128 and 159 to replace

 ESC [, ESC] and similar two-byte control sequence initiators. There

 are fragments of that in modern kernels (either overlooked or broken by Page 13/14

 changes to support UTF-8), but the implementation is incomplete and

 should be regarded as unreliable.

 Linux "private mode" sequences do not follow the rules in ECMA-48 for

 private mode control sequences. In particular, those ending with] do

 not use a standard terminating character. The OSC (set palette) se?

 quence is a greater problem, since xterm(1) may interpret this as a

 control sequence which requires a string terminator (ST). Unlike the

 setterm(1) sequences which will be ignored (since they are invalid con?

 trol sequences), the palette sequence will make xterm(1) appear to hang

 (though pressing the return-key will fix that). To accommodate appli?

 cations which have been hardcoded to use Linux control sequences, set

 the xterm(1) resource brokenLinuxOSC to true.

 An older version of this document implied that Linux recognizes the

 ECMA-48 control sequence for invisible text. It is ignored.

SEE ALSO

 ioctl_console(2), charsets(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 CONSOLE_CODES(4)

Page 14/14

