
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'clock_getres.2' command

$ man clock_getres.2

CLOCK_GETRES(2) Linux Programmer's Manual CLOCK_GETRES(2)

NAME

 clock_getres, clock_gettime, clock_settime - clock and time functions

SYNOPSIS

 #include <time.h>

 int clock_getres(clockid_t clockid, struct timespec *res);

 int clock_gettime(clockid_t clockid, struct timespec *tp);

 int clock_settime(clockid_t clockid, const struct timespec *tp);

 Link with -lrt (only for glibc versions before 2.17).

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 clock_getres(), clock_gettime(), clock_settime():

 _POSIX_C_SOURCE >= 199309L

DESCRIPTION

 The function clock_getres() finds the resolution (precision) of the

 specified clock clockid, and, if res is non-NULL, stores it in the

 struct timespec pointed to by res. The resolution of clocks depends on

 the implementation and cannot be configured by a particular process.

 If the time value pointed to by the argument tp of clock_settime() is

 not a multiple of res, then it is truncated to a multiple of res.

 The functions clock_gettime() and clock_settime() retrieve and set the

 time of the specified clock clockid.

 The res and tp arguments are timespec structures, as specified in

 <time.h>: Page 1/9

 struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

 The clockid argument is the identifier of the particular clock on which

 to act. A clock may be system-wide and hence visible for all pro?

 cesses, or per-process if it measures time only within a single

 process.

 All implementations support the system-wide real-time clock, which is

 identified by CLOCK_REALTIME. Its time represents seconds and nanosec?

 onds since the Epoch. When its time is changed, timers for a relative

 interval are unaffected, but timers for an absolute point in time are

 affected.

 More clocks may be implemented. The interpretation of the correspond?

 ing time values and the effect on timers is unspecified.

 Sufficiently recent versions of glibc and the Linux kernel support the

 following clocks:

 CLOCK_REALTIME

 A settable system-wide clock that measures real (i.e., wall-

 clock) time. Setting this clock requires appropriate privi?

 leges. This clock is affected by discontinuous jumps in the

 system time (e.g., if the system administrator manually changes

 the clock), and by the incremental adjustments performed by adj?

 time(3) and NTP.

 CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)

 Like CLOCK_REALTIME, but not settable. See timer_create(2) for

 further details.

 CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)

 A faster but less precise version of CLOCK_REALTIME. This clock

 is not settable. Use when you need very fast, but not fine-

 grained timestamps. Requires per-architecture support, and

 probably also architecture support for this flag in the vdso(7).

 CLOCK_TAI (since Linux 3.10; Linux-specific) Page 2/9

 A nonsettable system-wide clock derived from wall-clock time but

 ignoring leap seconds. This clock does not experience disconti?

 nuities and backwards jumps caused by NTP inserting leap seconds

 as CLOCK_REALTIME does.

 The acronym TAI refers to International Atomic Time.

 CLOCK_MONOTONIC

 A nonsettable system-wide clock that represents monotonic time

 since?as described by POSIX?"some unspecified point in the

 past". On Linux, that point corresponds to the number of sec?

 onds that the system has been running since it was booted.

 The CLOCK_MONOTONIC clock is not affected by discontinuous jumps

 in the system time (e.g., if the system administrator manually

 changes the clock), but is affected by the incremental adjust?

 ments performed by adjtime(3) and NTP. This clock does not

 count time that the system is suspended. All CLOCK_MONOTONIC

 variants guarantee that the time returned by consecutive calls

 will not go backwards, but successive calls may?depending on the

 architecture?return identical (not-increased) time values.

 CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)

 A faster but less precise version of CLOCK_MONOTONIC. Use when

 you need very fast, but not fine-grained timestamps. Requires

 per-architecture support, and probably also architecture support

 for this flag in the vdso(7).

 CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)

 Similar to CLOCK_MONOTONIC, but provides access to a raw hard?

 ware-based time that is not subject to NTP adjustments or the

 incremental adjustments performed by adjtime(3). This clock

 does not count time that the system is suspended.

 CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)

 A nonsettable system-wide clock that is identical to CLOCK_MONO?

 TONIC, except that it also includes any time that the system is

 suspended. This allows applications to get a suspend-aware

 monotonic clock without having to deal with the complications of Page 3/9

 CLOCK_REALTIME, which may have discontinuities if the time is

 changed using settimeofday(2) or similar.

 CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)

 Like CLOCK_BOOTTIME. See timer_create(2) for further details.

 CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)

 This is a clock that measures CPU time consumed by this process

 (i.e., CPU time consumed by all threads in the process). On

 Linux, this clock is not settable.

 CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)

 This is a clock that measures CPU time consumed by this thread.

 On Linux, this clock is not settable.

 Linux also implements dynamic clock instances as described below.

 Dynamic clocks

 In addition to the hard-coded System-V style clock IDs described above,

 Linux also supports POSIX clock operations on certain character de?

 vices. Such devices are called "dynamic" clocks, and are supported

 since Linux 2.6.39.

 Using the appropriate macros, open file descriptors may be converted

 into clock IDs and passed to clock_gettime(), clock_settime(), and

 clock_adjtime(2). The following example shows how to convert a file

 descriptor into a dynamic clock ID.

 #define CLOCKFD 3

 #define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)

 #define CLOCKID_TO_FD(clk) ((unsigned int) ~((clk) >> 3))

 struct timespec ts;

 clockid_t clkid;

 int fd;

 fd = open("/dev/ptp0", O_RDWR);

 clkid = FD_TO_CLOCKID(fd);

 clock_gettime(clkid, &ts);

RETURN VALUE

 clock_gettime(), clock_settime(), and clock_getres() return 0 for suc?

 cess, or -1 for failure (in which case errno is set appropriately). Page 4/9

ERRORS

 EACCES clock_settime() does not have write permission for the dynamic

 POSIX clock device indicated.

 EFAULT tp points outside the accessible address space.

 EINVAL The clockid specified is invalid for one of two reasons. Either

 the System-V style hard coded positive value is out of range, or

 the dynamic clock ID does not refer to a valid instance of a

 clock object.

 EINVAL (clock_settime()): tp.tv_sec is negative or tp.tv_nsec is out?

 side the range [0..999,999,999].

 EINVAL The clockid specified in a call to clock_settime() is not a set?

 table clock.

 EINVAL (since Linux 4.3)

 A call to clock_settime() with a clockid of CLOCK_REALTIME at?

 tempted to set the time to a value less than the current value

 of the CLOCK_MONOTONIC clock.

 ENODEV The hot-pluggable device (like USB for example) represented by a

 dynamic clk_id has disappeared after its character device was

 opened.

 ENOTSUP

 The operation is not supported by the dynamic POSIX clock device

 specified.

 EPERM clock_settime() does not have permission to set the clock indi?

 cated.

VERSIONS

 These system calls first appeared in Linux 2.6.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?clock_getres(), clock_gettime(), ? Thread safety ? MT-Safe ? Page 5/9

 ?clock_settime() ? ? ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SUSv2.

 On POSIX systems on which these functions are available, the symbol

 _POSIX_TIMERS is defined in <unistd.h> to a value greater than 0. The

 symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME, _POSIX_THREAD_CPUTIME

 indicate that CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID,

 CLOCK_THREAD_CPUTIME_ID are available. (See also sysconf(3).)

NOTES

 POSIX.1 specifies the following:

 Setting the value of the CLOCK_REALTIME clock via clock_set?

 time() shall have no effect on threads that are blocked waiting

 for a relative time service based upon this clock, including the

 nanosleep() function; nor on the expiration of relative timers

 based upon this clock. Consequently, these time services shall

 expire when the requested relative interval elapses, indepen?

 dently of the new or old value of the clock.

 According to POSIX.1-2001, a process with "appropriate privileges" may

 set the CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID clocks us?

 ing clock_settime(). On Linux, these clocks are not settable (i.e., no

 process has "appropriate privileges").

 C library/kernel differences

 On some architectures, an implementation of clock_gettime() is provided

 in the vdso(7).

 Historical note for SMP systems

 Before Linux added kernel support for CLOCK_PROCESS_CPUTIME_ID and

 CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many plat?

 forms using timer registers from the CPUs (TSC on i386, AR.ITC on Ita?

 nium). These registers may differ between CPUs and as a consequence

 these clocks may return bogus results if a process is migrated to an?

 other CPU.

 If the CPUs in an SMP system have different clock sources, then there Page 6/9

 is no way to maintain a correlation between the timer registers since

 each CPU will run at a slightly different frequency. If that is the

 case, then clock_getcpuclockid(0) will return ENOENT to signify this

 condition. The two clocks will then be useful only if it can be en?

 sured that a process stays on a certain CPU.

 The processors in an SMP system do not start all at exactly the same

 time and therefore the timer registers are typically running at an off?

 set. Some architectures include code that attempts to limit these off?

 sets on bootup. However, the code cannot guarantee to accurately tune

 the offsets. Glibc contains no provisions to deal with these offsets

 (unlike the Linux Kernel). Typically these offsets are small and

 therefore the effects may be negligible in most cases.

 Since glibc 2.4, the wrapper functions for the system calls described

 in this page avoid the abovementioned problems by employing the kernel

 implementation of CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID,

 on systems that provide such an implementation (i.e., Linux 2.6.12 and

 later).

EXAMPLES

 The program below demonstrates the use of clock_gettime() and clock_ge?

 tres() with various clocks. This is an example of what we might see

 when running the program:

 $./clock_times x

 CLOCK_REALTIME : 1585985459.446 (18356 days + 7h 30m 59s)

 resolution: 0.000000001

 CLOCK_TAI : 1585985496.447 (18356 days + 7h 31m 36s)

 resolution: 0.000000001

 CLOCK_MONOTONIC: 52395.722 (14h 33m 15s)

 resolution: 0.000000001

 CLOCK_BOOTTIME : 72691.019 (20h 11m 31s)

 resolution: 0.000000001

 Program source

 /* clock_times.c

 Licensed under GNU General Public License v2 or later. Page 7/9

 */

 #define _XOPEN_SOURCE 600

 #include <time.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <stdbool.h>

 #include <unistd.h>

 #define SECS_IN_DAY (24 * 60 * 60)

 static void

 displayClock(clockid_t clock, const char *name, bool showRes)

 {

 struct timespec ts;

 if (clock_gettime(clock, &ts) == -1) {

 perror("clock_gettime");

 exit(EXIT_FAILURE);

 }

 printf("%-15s: %10jd.%03ld (", name,

 (intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

 long days = ts.tv_sec / SECS_IN_DAY;

 if (days > 0)

 printf("%ld days + ", days);

 printf("%2dh %2dm %2ds",

 (int) (ts.tv_sec % SECS_IN_DAY) / 3600,

 (int) (ts.tv_sec % 3600) / 60,

 (int) ts.tv_sec % 60);

 printf(")\n");

 if (clock_getres(clock, &ts) == -1) {

 perror("clock_getres");

 exit(EXIT_FAILURE);

 }

 if (showRes)

 printf(" resolution: %10jd.%09ld\n", Page 8/9

 (intmax_t) ts.tv_sec, ts.tv_nsec);

 }

 int

 main(int argc, char *argv[])

 {

 bool showRes = argc > 1;

 displayClock(CLOCK_REALTIME, "CLOCK_REALTIME", showRes);

 #ifdef CLOCK_TAI

 displayClock(CLOCK_TAI, "CLOCK_TAI", showRes);

 #endif

 displayClock(CLOCK_MONOTONIC, "CLOCK_MONOTONIC", showRes);

 #ifdef CLOCK_BOOTTIME

 displayClock(CLOCK_BOOTTIME, "CLOCK_BOOTTIME", showRes);

 #endif

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3),

 clock_getcpuclockid(3), ctime(3), ftime(3), pthread_getcpuclockid(3),

 sysconf(3), time(7), time_namespaces(7), vdso(7), hwclock(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-12-21 CLOCK_GETRES(2)

Page 9/9

