
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'charsets.7' command

$ man charsets.7

CHARSETS(7)                Linux Programmer's Manual               CHARSETS(7)

NAME

       charsets - character set standards and internationalization

DESCRIPTION

       This manual page gives an overview on different character set standards

       and how they were used on Linux before Unicode became ubiquitous.  Some

       of  this  information  is  still helpful for people working with legacy

       systems and documents.

       Standards discussed include such as ASCII,  GB  2312,  ISO  8859,  JIS,

       KOI8-R, KS, and Unicode.

       The  primary  emphasis  is on character sets that were actually used by

       locale character sets, not the myriad others that  could  be  found  in

       data from other systems.

   ASCII

       ASCII (American Standard Code For Information Interchange) is the orig?

       inal 7-bit character set, originally  designed  for  American  English.

       Also  known as US-ASCII.  It is currently described by the ISO 646:1991

       IRV (International Reference Version) standard.

       Various ASCII variants replacing the dollar sign  with  other  currency

       symbols  and  replacing punctuation with non-English alphabetic charac?

       ters to cover German, French, Spanish, and others in  7  bits  emerged.

       All are deprecated; glibc does not support locales whose character sets

       are not true supersets of ASCII. Page 1/8



       As Unicode, when using UTF-8, is  ASCII-compatible,  plain  ASCII  text

       still renders properly on modern UTF-8 using systems.

   ISO 8859

       ISO  8859  is  a  series  of 15 8-bit character sets, all of which have

       ASCII in their low (7-bit) half, invisible control characters in  posi?

       tions 128 to 159, and 96 fixed-width graphics in positions 160?255.

       Of  these,  the  most important is ISO 8859-1 ("Latin Alphabet No .1" /

       Latin-1).  It was widely adopted and supported  by  different  systems,

       and  is  gradually being replaced with Unicode.  The ISO 8859-1 charac?

       ters are also the first 256 characters of Unicode.

       Console support for the other 8859 character sets  is  available  under

       Linux through user-mode utilities (such as setfont(8)) that modify key?

       board bindings and the EGA graphics table and employ the "user mapping"

       font table in the console driver.

       Here are brief descriptions of each set:

       8859-1 (Latin-1)

              Latin-1  covers  many  West European languages such as Albanian,

              Basque, Danish, English, Faroese,  Galician,  Icelandic,  Irish,

              Italian,  Norwegian, Portuguese, Spanish, and Swedish.  The lack

              of the ligatures Dutch ?/?, French  ?,  and  old-style  ?German?

              quotation marks was considered tolerable.

       8859-2 (Latin-2)

              Latin-2  supports  many  Latin-written Central and East European

              languages such as Bosnian, Croatian, Czech,  German,  Hungarian,

              Polish,  Slovak,  and  Slovene.  Replacing Romanian ?/? with ?/?

              was considered tolerable.

       8859-3 (Latin-3)

              Latin-3 was designed to cover of Esperanto, Maltese,  and  Turk?

              ish, but 8859-9 later superseded it for Turkish.

       8859-4 (Latin-4)

              Latin-4  introduced letters for North European languages such as

              Estonian, Latvian, and Lithuanian, but was superseded by 8859-10

              and 8859-13. Page 2/8



       8859-5 Cyrillic letters supporting Bulgarian, Byelorussian, Macedonian,

              Russian, Serbian, and (almost  completely)  Ukrainian.   It  was

              never widely used, see the discussion of KOI8-R/KOI8-U below.

       8859-6 Was  created for Arabic.  The 8859-6 glyph table is a fixed font

              of separate letter forms, but a  proper  display  engine  should

              combine these using the proper initial, medial, and final forms.

       8859-7 Was created for Modern Greek in 1987, updated in 2003.

       8859-8 Supports Modern Hebrew without niqud (punctuation signs).  Niqud

              and full-fledged Biblical Hebrew were outside the scope of  this

              character set.

       8859-9 (Latin-5)

              This  is  a  variant  of Latin-1 that replaces Icelandic letters

              with Turkish ones.

       8859-10 (Latin-6)

              Latin-6 added the Inuit (Greenlandic) and Sami (Lappish) letters

              that were missing in Latin-4 to cover the entire Nordic area.

       8859-11

              Supports  the  Thai  alphabet  and  is  nearly  identical to the

              TIS-620 standard.

       8859-12

              This set does not exist.

       8859-13 (Latin-7)

              Supports the Baltic Rim languages; in  particular,  it  includes

              Latvian characters not found in Latin-4.

       8859-14 (Latin-8)

              This  is  the  Celtic  character  set, covering Old Irish, Manx,

              Gaelic, Welsh, Cornish, and Breton.

       8859-15 (Latin-9)

              Latin-9 is similar to the widely used Latin-1 but replaces  some

              less  common  symbols  with the Euro sign and French and Finnish

              letters that were missing in Latin-1.

       8859-16 (Latin-10)

              This set covers many Southeast European languages, and most  im? Page 3/8



              portantly supports Romanian more completely than Latin-2.

   KOI8-R / KOI8-U

       KOI8-R  is  a  non-ISO  character set popular in Russia before Unicode.

       The lower half is ASCII; the upper is a Cyrillic character set somewhat

       better  designed  than ISO 8859-5.  KOI8-U, based on KOI8-R, has better

       support for Ukrainian.  Neither of these sets are ISO-2022  compatible,

       unlike the ISO 8859 series.

       Console  support  for KOI8-R is available under Linux through user-mode

       utilities that modify keyboard bindings and the EGA graphics table, and

       employ the "user mapping" font table in the console driver.

   GB 2312

       GB  2312  is a mainland Chinese national standard character set used to

       express simplified Chinese.  Just  like  JIS  X  0208,  characters  are

       mapped  into  a 94x94 two-byte matrix used to construct EUC-CN.  EUC-CN

       is the most important encoding for Linux  and  includes  ASCII  and  GB

       2312.  Note that EUC-CN is often called as GB, GB 2312, or CN-GB.

   Big5

       Big5  was a popular character set in Taiwan to express traditional Chi?

       nese.  (Big5 is both a character set and an encoding.)  It is a  super?

       set  of ASCII.  Non-ASCII characters are expressed in two bytes.  Bytes

       0xa1?0xfe are used as leading bytes for two-byte characters.  Big5  and

       its  extension were widely used in Taiwan and Hong Kong.  It is not ISO

       2022 compliant.

   JIS X 0208

       JIS X 0208 is a Japanese national standard character set.  Though there

       are  some  more  Japanese  national standard character sets (like JIS X

       0201, JIS X 0212, and JIS X 0213), this  is  the  most  important  one.

       Characters  are mapped into a 94x94 two-byte matrix, whose each byte is

       in the range 0x21?0x7e.  Note that JIS X 0208 is a character  set,  not

       an  encoding.   This  means  that JIS X 0208 itself is not used for ex?

       pressing text data.  JIS X 0208 is used as a component to construct en?

       codings such as EUC-JP, Shift_JIS, and ISO-2022-JP.  EUC-JP is the most

       important encoding for Linux and includes ASCII and  JIS  X  0208.   In Page 4/8



       EUC-JP, JIS X 0208 characters are expressed in two bytes, each of which

       is the JIS X 0208 code plus 0x80.

   KS X 1001

       KS X 1001 is a Korean national standard character set.  Just as  JIS  X

       0208, characters are mapped into a 94x94 two-byte matrix.  KS X 1001 is

       used like JIS X 0208, as a component to  construct  encodings  such  as

       EUC-KR,  Johab, and ISO-2022-KR.  EUC-KR is the most important encoding

       for Linux and includes ASCII and KS X 1001.  KS C 5601 is an older name

       for KS X 1001.

   ISO 2022 and ISO 4873

       The  ISO 2022 and 4873 standards describe a font-control model based on

       VT100 practice.  This model is (partially) supported by the Linux  ker?

       nel  and  by xterm(1).  Several ISO 2022-based character encodings have

       been defined, especially for Japanese.

       There are 4 graphic character sets, called G0, G1, G2, and G3, and  one

       of them is the current character set for codes with high bit zero (ini?

       tially G0), and one of them is the current character set for codes with

       high  bit  one (initially G1).  Each graphic character set has 94 or 96

       characters, and is essentially a 7-bit character set.   It  uses  codes

       either  040?0177  (041?0176)  or  0240?0377 (0241?0376).  G0 always has

       size 94 and uses codes 041?0176.

       Switching between character sets is done using the shift  functions  ^N

       (SO or LS1), ^O (SI or LS0), ESC n (LS2), ESC o (LS3), ESC N (SS2), ESC

       O (SS3), ESC ~ (LS1R), ESC } (LS2R), ESC | (LS3R).   The  function  LSn

       makes  character  set  Gn the current one for codes with high bit zero.

       The function LSnR makes character set Gn the current one for codes with

       high  bit  one.  The function SSn makes character set Gn (n=2 or 3) the

       current one for the next character only (regardless of the value of its

       high order bit).

       A  94-character  set is designated as Gn character set by an escape se?

       quence ESC ( xx (for G0), ESC ) xx (for G1), ESC * xx (for G2),  ESC  +

       xx (for G3), where xx is a symbol or a pair of symbols found in the ISO

       2375 International Register of Coded Character Sets.  For example,  ESC Page 5/8



       (  @  selects  the  ISO 646 character set as G0, ESC ( A selects the UK

       standard character set (with pound instead of number sign), ESC ( B se?

       lects  ASCII  (with dollar instead of currency sign), ESC ( M selects a

       character set for African languages, ESC ( ! A selects the Cuban  char?

       acter set, and so on.

       A  96-character  set is designated as Gn character set by an escape se?

       quence ESC - xx (for G1), ESC . xx (for G2) or ESC / xx (for G3).   For

       example, ESC - G selects the Hebrew alphabet as G1.

       A  multibyte  character set is designated as Gn character set by an es?

       cape sequence ESC $ xx or ESC $ ( xx (for G0), ESC $ ) xx (for G1), ESC

       $  *  xx (for G2), ESC $ + xx (for G3).  For example, ESC $ ( C selects

       the Korean character set for G0.  The Japanese character  set  selected

       by ESC $ B has a more recent version selected by ESC & @ ESC $ B.

       ISO 4873 stipulates a narrower use of character sets, where G0 is fixed

       (always ASCII), so that G1, G2 and G3 can be  invoked  only  for  codes

       with  the  high  order  bit set.  In particular, ^N and ^O are not used

       anymore, ESC ( xx can be used only with xx=B, and ESC ) xx, ESC  *  xx,

       ESC + xx are equivalent to ESC - xx, ESC . xx, ESC / xx, respectively.

   TIS-620

       TIS-620  is  a  Thai  national standard character set and a superset of

       ASCII.  In the same fashion as the ISO 8859 series, Thai characters are

       mapped into 0xa1?0xfe.

   Unicode

       Unicode (ISO 10646) is a standard which aims to unambiguously represent

       every character in every human language.  Unicode's  structure  permits

       20.1  bits  to  encode every character.  Since most computers don't in?

       clude 20.1-bit integers, Unicode is usually encoded as 32-bit  integers

       internally and either a series of 16-bit integers (UTF-16) (needing two

       16-bit integers only when encoding certain rare characters) or a series

       of 8-bit bytes (UTF-8).

       Linux  represents Unicode using the 8-bit Unicode Transformation Format

       (UTF-8).  UTF-8 is a variable length encoding of Unicode.   It  uses  1

       byte  to code 7 bits, 2 bytes for 11 bits, 3 bytes for 16 bits, 4 bytes Page 6/8



       for 21 bits, 5 bytes for 26 bits, 6 bytes for 31 bits.

       Let 0,1,x stand for a zero, one, or arbitrary  bit.   A  byte  0xxxxxxx

       stands for the Unicode 00000000 0xxxxxxx which codes the same symbol as

       the ASCII 0xxxxxxx.  Thus, ASCII goes unchanged into UTF-8, and  people

       using only ASCII do not notice any change: not in code, and not in file

       size.

       A byte 110xxxxx is the start of a 2-byte code, and 110xxxxx 10yyyyyy is

       assembled  into  00000xxx  xxyyyyyy.  A byte 1110xxxx is the start of a

       3-byte code, and 1110xxxx 10yyyyyy 10zzzzzz is assembled into  xxxxyyyy

       yyzzzzzz.   (When  UTF-8 is used to code the 31-bit ISO 10646 then this

       progression continues up to 6-byte codes.)

       For most texts in ISO 8859 character sets, this means that the  charac?

       ters  outside of ASCII are now coded with two bytes.  This tends to ex?

       pand ordinary text files by only one or two percent.   For  Russian  or

       Greek  texts,  this  expands ordinary text files by 100%, since text in

       those languages is mostly outside of ASCII.  For  Japanese  users  this

       means  that  the  16-bit codes now in common use will take three bytes.

       While there are algorithmic conversions from some character sets (espe?

       cially  ISO  8859-1)  to  Unicode, general conversion requires carrying

       around conversion tables, which can be quite large for 16-bit codes.

       Note that UTF-8 is self-synchronizing: 10xxxxxx is a  tail,  any  other

       byte  is  the head of a code.  Note that the only way ASCII bytes occur

       in a UTF-8 stream, is as themselves.  In particular, there are  no  em?

       bedded NULs ('\0') or '/'s that form part of some larger code.

       Since ASCII, and, in particular, NUL and '/', are unchanged, the kernel

       does not notice that UTF-8 is being used.  It does not care at all what

       the bytes it is handling stand for.

       Rendering  of  Unicode  data streams is typically handled through "sub?

       font" tables which map a subset of Unicode to glyphs.   Internally  the

       kernel  uses Unicode to describe the subfont loaded in video RAM.  This

       means that in the Linux console in UTF-8 mode, one can use a  character

       set  with 512 different symbols.  This is not enough for Japanese, Chi?

       nese, and Korean, but it is enough for most other purposes. Page 7/8



SEE ALSO

       iconv(1), ascii(7), iso_8859-1(7), unicode(7), utf-8(7)

COLOPHON

       This page is part of release 5.10 of the Linux  man-pages  project.   A

       description  of  the project, information about reporting bugs, and the

       latest    version    of    this    page,    can     be     found     at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-08-13                       CHARSETS(7)

Page 8/8


