
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'bwrap.1' command

$ man bwrap.1

BWRAP(1) User Commands BWRAP(1)

NAME

 bwrap - container setup utility

SYNOPSIS

 bwrap [OPTION...] [COMMAND]

DESCRIPTION

 bwrap is a privileged helper for container setup. You are unlikely to

 use it directly from the commandline, although that is possible.

 It works by creating a new, completely empty, filesystem namespace

 where the root is on a tmpfs that is invisible from the host, and which

 will be automatically cleaned up when the last process exits. You can

 then use commandline options to construct the root filesystem and

 process environment for the command to run in the namespace.

 By default, bwrap creates a new mount namespace for the sandbox.

 Optionally it also sets up new user, ipc, pid, network and uts

 namespaces (but note the user namespace is required if bwrap is not

 installed setuid root). The application in the sandbox can be made to

 run with a different UID and GID.

 If needed (e.g. when using a PID namespace) bwrap is running a minimal

 pid 1 process in the sandbox that is responsible for reaping zombies.

 It also detects when the initial application process (pid 2) dies and

 reports its exit status back to the original spawner. The pid 1 process

 exits to clean up the sandbox when there are no other processes in the Page 1/7

 sandbox left.

OPTIONS

 When options are used multiple times, the last option wins, unless

 otherwise specified.

 General options:

 --help

 Print help and exit

 --version

 Print version

 --args FD

 Parse nul-separated arguments from the given file descriptor. This

 option can be used multiple times to parse options from multiple

 sources.

 Options related to kernel namespaces:

 --unshare-user

 Create a new user namespace

 --unshare-user-try

 Create a new user namespace if possible else skip it

 --unshare-ipc

 Create a new ipc namespace

 --unshare-pid

 Create a new pid namespace

 --unshare-net

 Create a new network namespace

 --unshare-uts

 Create a new uts namespace

 --unshare-cgroup

 Create a new cgroup namespace

 --unshare-cgroup-try

 Create a new cgroup namespace if possible else skip it

 --unshare-all

 Unshare all possible namespaces. Currently equivalent with:

 --unshare-user-try --unshare-ipc --unshare-pid --unshare-net Page 2/7

 --unshare-uts --unshare-cgroup-try

 --userns FD

 Use an existing user namespace instead of creating a new one. The

 namespace must fulfil the permission requirements for setns(),

 which generally means that it must be a decendant of the currently

 active user namespace, owned by the same user.

 This is incompatible with --unshare-user, and doesn't work in the

 setuid version of bubblewrap.

 --userns2 FD

 After setting up the new namespace, switch into the specified

 namespace. For this to work the specified namespace must be a

 decendant of the user namespace used for the setup, so this is only

 useful in combination with --userns.

 This is useful because sometimes bubblewrap itself creates nested

 user namespaces (to work around some kernel issues) and --userns2

 can be used to enter these.

 --pidns FD

 Use an existing pid namespace instead of creating one. This is

 often used with --userns, because the pid namespace must be owned

 by the same user namespace that bwrap uses.

 Note that this can be combined with --unshare-pid, and in that case

 it means that the sandbox will be in its own pid namespace, which

 is a child of the passed in one.

 --uid UID

 Use a custom user id in the sandbox (requires --unshare-user)

 --gid GID

 Use a custom group id in the sandbox (requires --unshare-user)

 --hostname HOSTNAME

 Use a custom hostname in the sandbox (requires --unshare-uts)

 Options about environment setup:

 --chdir DIR

 Change directory to DIR

 --setenv VAR VALUE Page 3/7

 Set an environment variable

 --unsetenv VAR

 Unset an environment variable

 Options for monitoring the sandbox from the outside:

 --lock-file DEST

 Take a lock on DEST while the sandbox is running. This option can

 be used multiple times to take locks on multiple files.

 --sync-fd FD

 Keep this file descriptor open while the sandbox is running

 Filesystem related options. These are all operations that modify the

 filesystem directly, or mounts stuff in the filesystem. These are

 applied in the order they are given as arguments. Any missing parent

 directories that are required to create a specified destination are

 automatically created as needed.

 --bind SRC DEST

 Bind mount the host path SRC on DEST

 --bind-try SRC DEST

 Equal to --bind but ignores non-existent SRC

 --dev-bind SRC DEST

 Bind mount the host path SRC on DEST, allowing device access

 --dev-bind-try SRC DEST

 Equal to --dev-bind but ignores non-existent SRC

 --ro-bind SRC DEST

 Bind mount the host path SRC readonly on DEST

 --ro-bind-try SRC DEST

 Equal to --ro-bind but ignores non-existent SRC

 --remount-ro DEST

 Remount the path DEST as readonly. It works only on the specified

 mount point, without changing any other mount point under the

 specified path

 --proc DEST

 Mount procfs on DEST

 --dev DEST Page 4/7

 Mount new devtmpfs on DEST

 --tmpfs DEST

 Mount new tmpfs on DEST

 --mqueue DEST

 Mount new mqueue on DEST

 --dir DEST

 Create a directory at DEST

 --file FD DEST

 Copy from the file descriptor FD to DEST

 --bind-data FD DEST

 Copy from the file descriptor FD to a file which is bind-mounted on

 DEST

 --ro-bind-data FD DEST

 Copy from the file descriptor FD to a file which is bind-mounted

 readonly on DEST

 --symlink SRC DEST

 Create a symlink at DEST with target SRC

 Lockdown options:

 --seccomp FD

 Load and use seccomp rules from FD. The rules need to be in the

 form of a compiled eBPF program, as generated by

 seccomp_export_bpf.

 --exec-label LABEL

 Exec Label from the sandbox. On an SELinux system you can specify

 the SELinux context for the sandbox process(s).

 --file-label LABEL

 File label for temporary sandbox content. On an SELinux system you

 can specify the SELinux context for the sandbox content.

 --block-fd FD

 Block the sandbox on reading from FD until some data is available.

 --userns-block-fd FD

 Do not initialize the user namespace but wait on FD until it is

 ready. This allow external processes (like newuidmap/newgidmap) to Page 5/7

 setup the user namespace before it is used by the sandbox process.

 --info-fd FD

 Write information in JSON format about the sandbox to FD.

 --new-session

 Create a new terminal session for the sandbox (calls setsid()).

 This disconnects the sandbox from the controlling terminal which

 means the sandbox can't for instance inject input into the

 terminal.

 Note: In a general sandbox, if you don't use --new-session, it is

 recommended to use seccomp to disallow the TIOCSTI ioctl, otherwise

 the application can feed keyboard input to the terminal.

 --die-with-parent

 Ensures child process (COMMAND) dies when bwrap's parent dies.

 Kills (SIGKILL) all bwrap sandbox processes in sequence from parent

 to child including COMMAND process when bwrap or bwrap's parent

 dies. See prctl, PR_SET_PDEATHSIG.

 --as-pid-1

 Do not create a process with PID=1 in the sandbox to reap child

 processes.

 --cap-add CAP

 Add the specified capability when running as privileged user. It

 accepts the special value ALL to add all the permitted caps.

 --cap-drop CAP

 Drop the specified capability when running as privileged user. It

 accepts the special value ALL to drop all the caps. By default no

 caps are left in the sandboxed process. The --cap-add and

 --cap-drop options are processed in the order they are specified on

 the command line. Please be careful to the order they are

 specified.

ENVIRONMENT

 HOME

 Used as the cwd in the sandbox if --chdir has not been explicitly

 specified and the current cwd is not present inside the sandbox. Page 6/7

 The --setenv option can be used to override the value that is used

 here.

EXIT STATUS

 The bwrap command returns the exit status of the initial application

 process (pid 2 in the sandbox).

Project Atomic BWRAP(1)

Page 7/7

