
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'bundle-update.1' command

$ man bundle-update.1

BUNDLE-UPDATE(1) BUNDLE-UPDATE(1)

NAME

 bundle-update - Update your gems to the latest available versions

SYNOPSIS

 bundle update *gems [--all] [--group=NAME] [--source=NAME] [--local]

 [--ruby] [--bundler[=VERSION]] [--full-index] [--jobs=JOBS] [--quiet]

 [--patch|--minor|--major] [--redownload] [--strict] [--conservative]

DESCRIPTION

 Update the gems specified (all gems, if --all flag is used), ignoring

 the previously installed gems specified in the Gemfile.lock. In gen?

 eral, you should use bundle install(1) bundle-install.1.html to install

 the same exact gems and versions across machines.

 You would use bundle update to explicitly update the version of a gem.

OPTIONS

 --all Update all gems specified in Gemfile.

 --group=<name>, -g=[<name>]

 Only update the gems in the specified group. For instance, you

 can update all gems in the development group with bundle update

 --group development. You can also call bundle update rails

 --group test to update the rails gem and all gems in the test

 group, for example.

 --source=<name>

 The name of a :git or :path source used in the Gemfile(5). For Page 1/9

 instance, with a :git source of

 http://github.com/rails/rails.git, you would call bundle update

 --source rails

 --local

 Do not attempt to fetch gems remotely and use the gem cache in?

 stead.

 --ruby Update the locked version of Ruby to the current version of

 Ruby.

 --bundler

 Update the locked version of bundler to the invoked bundler ver?

 sion.

 --full-index

 Fall back to using the single-file index of all gems.

 --jobs=[<number>], -j[<number>]

 Specify the number of jobs to run in parallel. The default is 1.

 --retry=[<number>]

 Retry failed network or git requests for number times.

 --quiet

 Only output warnings and errors.

 --redownload

 Force downloading every gem.

 --patch

 Prefer updating only to next patch version.

 --minor

 Prefer updating only to next minor version.

 --major

 Prefer updating to next major version (default).

 --strict

 Do not allow any gem to be updated past latest --patch | --minor

 | --major.

 --conservative

 Use bundle install conservative update behavior and do not allow

 indirect dependencies to be updated. Page 2/9

UPDATING ALL GEMS

 If you run bundle update --all, bundler will ignore any previously in?

 stalled gems and resolve all dependencies again based on the latest

 versions of all gems available in the sources.

 Consider the following Gemfile(5):

 source "https://rubygems.org"

 gem "rails", "3.0.0.rc"

 gem "nokogiri"

 When you run bundle install(1) bundle-install.1.html the first time,

 bundler will resolve all of the dependencies, all the way down, and in?

 stall what you need:

 Fetching gem metadata from https://rubygems.org/.........

 Resolving dependencies...

 Installing builder 2.1.2

 Installing abstract 1.0.0

 Installing rack 1.2.8

 Using bundler 1.7.6

 Installing rake 10.4.0

 Installing polyglot 0.3.5

 Installing mime-types 1.25.1

 Installing i18n 0.4.2

 Installing mini_portile 0.6.1

 Installing tzinfo 0.3.42

 Installing rack-mount 0.6.14

 Installing rack-test 0.5.7

 Installing treetop 1.4.15

 Installing thor 0.14.6

 Installing activesupport 3.0.0.rc

 Installing erubis 2.6.6

 Installing activemodel 3.0.0.rc

 Installing arel 0.4.0

 Installing mail 2.2.20

 Installing activeresource 3.0.0.rc Page 3/9

 Installing actionpack 3.0.0.rc

 Installing activerecord 3.0.0.rc

 Installing actionmailer 3.0.0.rc

 Installing railties 3.0.0.rc

 Installing rails 3.0.0.rc

 Installing nokogiri 1.6.5

 Bundle complete! 2 Gemfile dependencies, 26 gems total.

 Use `bundle show [gemname]` to see where a bundled gem is installed.

 As you can see, even though you have two gems in the Gemfile(5), your

 application needs 26 different gems in order to run. Bundler remembers

 the exact versions it installed in Gemfile.lock. The next time you run

 bundle install(1) bundle-install.1.html, bundler skips the dependency

 resolution and installs the same gems as it installed last time.

 After checking in the Gemfile.lock into version control and cloning it

 on another machine, running bundle install(1) bundle-install.1.html

 will still install the gems that you installed last time. You don?t

 need to worry that a new release of erubis or mail changes the gems you

 use.

 However, from time to time, you might want to update the gems you are

 using to the newest versions that still match the gems in your Gem?

 file(5).

 To do this, run bundle update --all, which will ignore the Gem?

 file.lock, and resolve all the dependencies again. Keep in mind that

 this process can result in a significantly different set of the 25

 gems, based on the requirements of new gems that the gem authors re?

 leased since the last time you ran bundle update --all.

UPDATING A LIST OF GEMS

 Sometimes, you want to update a single gem in the Gemfile(5), and leave

 the rest of the gems that you specified locked to the versions in the

 Gemfile.lock.

 For instance, in the scenario above, imagine that nokogiri releases

 version 1.4.4, and you want to update it without updating Rails and all

 of its dependencies. To do this, run bundle update nokogiri. Page 4/9

 Bundler will update nokogiri and any of its dependencies, but leave

 alone Rails and its dependencies.

OVERLAPPING DEPENDENCIES

 Sometimes, multiple gems declared in your Gemfile(5) are satisfied by

 the same second-level dependency. For instance, consider the case of

 thin and rack-perftools-profiler.

 source "https://rubygems.org"

 gem "thin"

 gem "rack-perftools-profiler"

 The thin gem depends on rack >= 1.0, while rack-perftools-profiler de?

 pends on rack ~> 1.0. If you run bundle install, you get:

 Fetching source index for https://rubygems.org/

 Installing daemons (1.1.0)

 Installing eventmachine (0.12.10) with native extensions

 Installing open4 (1.0.1)

 Installing perftools.rb (0.4.7) with native extensions

 Installing rack (1.2.1)

 Installing rack-perftools_profiler (0.0.2)

 Installing thin (1.2.7) with native extensions

 Using bundler (1.0.0.rc.3)

 In this case, the two gems have their own set of dependencies, but they

 share rack in common. If you run bundle update thin, bundler will up?

 date daemons, eventmachine and rack, which are dependencies of thin,

 but not open4 or perftools.rb, which are dependencies of

 rack-perftools_profiler. Note that bundle update thin will update rack

 even though it?s also a dependency of rack-perftools_profiler.

 In short, by default, when you update a gem using bundle update,

 bundler will update all dependencies of that gem, including those that

 are also dependencies of another gem.

 To prevent updating indirect dependencies, prior to version 1.14 the

 only option was the CONSERVATIVE UPDATING behavior in bundle install(1)

 bundle-install.1.html:

 In this scenario, updating the thin version manually in the Gemfile(5), Page 5/9

 and then running bundle install(1) bundle-install.1.html will only up?

 date daemons and eventmachine, but not rack. For more information, see

 the CONSERVATIVE UPDATING section of bundle install(1) bundle-in?

 stall.1.html.

 Starting with 1.14, specifying the --conservative option will also pre?

 vent indirect dependencies from being updated.

PATCH LEVEL OPTIONS

 Version 1.14 introduced 4 patch-level options that will influence how

 gem versions are resolved. One of the following options can be used:

 --patch, --minor or --major. --strict can be added to further influence

 resolution.

 --patch

 Prefer updating only to next patch version.

 --minor

 Prefer updating only to next minor version.

 --major

 Prefer updating to next major version (default).

 --strict

 Do not allow any gem to be updated past latest --patch | --minor

 | --major.

 When Bundler is resolving what versions to use to satisfy declared re?

 quirements in the Gemfile or in parent gems, it looks up all available

 versions, filters out any versions that don?t satisfy the requirement,

 and then, by default, sorts them from newest to oldest, considering

 them in that order.

 Providing one of the patch level options (e.g. --patch) changes the

 sort order of the satisfying versions, causing Bundler to consider the

 latest --patch or --minor version available before other versions. Note

 that versions outside the stated patch level could still be resolved to

 if necessary to find a suitable dependency graph.

 For example, if gem ?foo? is locked at 1.0.2, with no gem requirement

 defined in the Gemfile, and versions 1.0.3, 1.0.4, 1.1.0, 1.1.1, 2.0.0

 all exist, the default order of preference by default (--major) will be Page 6/9

 "2.0.0, 1.1.1, 1.1.0, 1.0.4, 1.0.3, 1.0.2".

 If the --patch option is used, the order of preference will change to

 "1.0.4, 1.0.3, 1.0.2, 1.1.1, 1.1.0, 2.0.0".

 If the --minor option is used, the order of preference will change to

 "1.1.1, 1.1.0, 1.0.4, 1.0.3, 1.0.2, 2.0.0".

 Combining the --strict option with any of the patch level options will

 remove any versions beyond the scope of the patch level option, to en?

 sure that no gem is updated that far.

 To continue the previous example, if both --patch and --strict options

 are used, the available versions for resolution would be "1.0.4, 1.0.3,

 1.0.2". If --minor and --strict are used, it would be "1.1.1, 1.1.0,

 1.0.4, 1.0.3, 1.0.2".

 Gem requirements as defined in the Gemfile will still be the first de?

 termining factor for what versions are available. If the gem require?

 ment for foo in the Gemfile is ?~> 1.0?, that will accomplish the same

 thing as providing the --minor and --strict options.

PATCH LEVEL EXAMPLES

 Given the following gem specifications:

 foo 1.4.3, requires: ~> bar 2.0

 foo 1.4.4, requires: ~> bar 2.0

 foo 1.4.5, requires: ~> bar 2.1

 foo 1.5.0, requires: ~> bar 2.1

 foo 1.5.1, requires: ~> bar 3.0

 bar with versions 2.0.3, 2.0.4, 2.1.0, 2.1.1, 3.0.0

 Gemfile:

 gem ?foo?

 Gemfile.lock:

 foo (1.4.3)

 bar (~> 2.0)

 bar (2.0.3)

 Cases:

 # Command Line Result

 -- Page 7/9

 1 bundle update --patch ?foo 1.4.5?, ?bar 2.1.1?

 2 bundle update --patch foo ?foo 1.4.5?, ?bar 2.1.1?

 3 bundle update --minor ?foo 1.5.1?, ?bar 3.0.0?

 4 bundle update --minor --strict ?foo 1.5.0?, ?bar 2.1.1?

 5 bundle update --patch --strict ?foo 1.4.4?, ?bar 2.0.4?

 In case 1, bar is upgraded to 2.1.1, a minor version increase, because

 the dependency from foo 1.4.5 required it.

 In case 2, only foo is requested to be unlocked, but bar is also al?

 lowed to move because it?s not a declared dependency in the Gemfile.

 In case 3, bar goes up a whole major release, because a minor increase

 is preferred now for foo, and when it goes to 1.5.1, it requires 3.0.0

 of bar.

 In case 4, foo is preferred up to a minor version, but 1.5.1 won?t work

 because the --strict flag removes bar 3.0.0 from consideration since

 it?s a major increment.

 In case 5, both foo and bar have any minor or major increments removed

 from consideration because of the --strict flag, so the most they can

 move is up to 1.4.4 and 2.0.4.

RECOMMENDED WORKFLOW

 In general, when working with an application managed with bundler, you

 should use the following workflow:

 ? After you create your Gemfile(5) for the first time, run

 $ bundle install

 ? Check the resulting Gemfile.lock into version control

 $ git add Gemfile.lock

 ? When checking out this repository on another development machine,

 run

 $ bundle install

 ? When checking out this repository on a deployment machine, run

 $ bundle install --deployment

 ? After changing the Gemfile(5) to reflect a new or update depen?

 dency, run

 $ bundle install Page 8/9

 ? Make sure to check the updated Gemfile.lock into version control

 $ git add Gemfile.lock

 ? If bundle install(1) bundle-install.1.html reports a conflict, man?

 ually update the specific gems that you changed in the Gemfile(5)

 $ bundle update rails thin

 ? If you want to update all the gems to the latest possible versions

 that still match the gems listed in the Gemfile(5), run

 $ bundle update --all

 December 2021 BUNDLE-UPDATE(1)

Page 9/9

