
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'bundle-exec.1' command

$ man bundle-exec.1

BUNDLE-EXEC(1) BUNDLE-EXEC(1)

NAME

 bundle-exec - Execute a command in the context of the bundle

SYNOPSIS

 bundle exec [--keep-file-descriptors] command

DESCRIPTION

 This command executes the command, making all gems specified in the

 [Gemfile(5)][Gemfile(5)] available to require in Ruby programs.

 Essentially, if you would normally have run something like rspec

 spec/my_spec.rb, and you want to use the gems specified in the [Gem?

 file(5)][Gemfile(5)] and installed via bundle install(1) bundle-in?

 stall.1.html, you should run bundle exec rspec spec/my_spec.rb.

 Note that bundle exec does not require that an executable is available

 on your shell?s $PATH.

OPTIONS

 --keep-file-descriptors

 Exec in Ruby 2.0 began discarding non-standard file descriptors.

 When this flag is passed, exec will revert to the 1.9 behaviour

 of passing all file descriptors to the new process.

BUNDLE INSTALL --BINSTUBS

 If you use the --binstubs flag in bundle install(1) bundle-in?

 stall.1.html, Bundler will automatically create a directory (which de?

 faults to app_root/bin) containing all of the executables available Page 1/4

 from gems in the bundle.

 After using --binstubs, bin/rspec spec/my_spec.rb is identical to bun?

 dle exec rspec spec/my_spec.rb.

ENVIRONMENT MODIFICATIONS

 bundle exec makes a number of changes to the shell environment, then

 executes the command you specify in full.

 ? make sure that it?s still possible to shell out to bundle from in?

 side a command invoked by bundle exec (using $BUNDLE_BIN_PATH)

 ? put the directory containing executables (like rails, rspec,

 rackup) for your bundle on $PATH

 ? make sure that if bundler is invoked in the subshell, it uses the

 same Gemfile (by setting BUNDLE_GEMFILE)

 ? add -rbundler/setup to $RUBYOPT, which makes sure that Ruby pro?

 grams invoked in the subshell can see the gems in the bundle

 It also modifies Rubygems:

 ? disallow loading additional gems not in the bundle

 ? modify the gem method to be a no-op if a gem matching the require?

 ments is in the bundle, and to raise a Gem::LoadError if it?s not

 ? Define Gem.refresh to be a no-op, since the source index is always

 frozen when using bundler, and to prevent gems from the system

 leaking into the environment

 ? Override Gem.bin_path to use the gems in the bundle, making system

 executables work

 ? Add all gems in the bundle into Gem.loaded_specs

 Finally, bundle exec also implicitly modifies Gemfile.lock if the lock?

 file and the Gemfile do not match. Bundler needs the Gemfile to deter?

 mine things such as a gem?s groups, autorequire, and platforms, etc.,

 and that information isn?t stored in the lockfile. The Gemfile and

 lockfile must be synced in order to bundle exec successfully, so bundle

 exec updates the lockfile beforehand.

 Loading

 By default, when attempting to bundle exec to a file with a ruby she?

 bang, Bundler will Kernel.load that file instead of using Kernel.exec. Page 2/4

 For the vast majority of cases, this is a performance improvement. In a

 rare few cases, this could cause some subtle side-effects (such as de?

 pendence on the exact contents of $0 or __FILE__) and the optimization

 can be disabled by enabling the disable_exec_load setting.

 Shelling out

 Any Ruby code that opens a subshell (like system, backticks, or %x{})

 will automatically use the current Bundler environment. If you need to

 shell out to a Ruby command that is not part of your current bundle,

 use the with_clean_env method with a block. Any subshells created in?

 side the block will be given the environment present before Bundler was

 activated. For example, Homebrew commands run Ruby, but don?t work in?

 side a bundle:

 Bundler.with_clean_env do

 `brew install wget`

 end

 Using with_clean_env is also necessary if you are shelling out to a

 different bundle. Any Bundler commands run in a subshell will inherit

 the current Gemfile, so commands that need to run in the context of a

 different bundle also need to use with_clean_env.

 Bundler.with_clean_env do

 Dir.chdir "/other/bundler/project" do

 `bundle exec ./script`

 end

 end

 Bundler provides convenience helpers that wrap system and exec, and

 they can be used like this:

 Bundler.clean_system(?brew install wget?)

 Bundler.clean_exec(?brew install wget?)

RUBYGEMS PLUGINS

 At present, the Rubygems plugin system requires all files named

 rubygems_plugin.rb on the load path of any installed gem when any Ruby

 code requires rubygems.rb. This includes executables installed into the

 system, like rails, rackup, and rspec. Page 3/4

 Since Rubygems plugins can contain arbitrary Ruby code, they commonly

 end up activating themselves or their dependencies.

 For instance, the gemcutter 0.5 gem depended on json_pure. If you had

 that version of gemcutter installed (even if you also had a newer ver?

 sion without this problem), Rubygems would activate gemcutter 0.5 and

 json_pure <latest>.

 If your Gemfile(5) also contained json_pure (or a gem with a dependency

 on json_pure), the latest version on your system might conflict with

 the version in your Gemfile(5), or the snapshot version in your Gem?

 file.lock.

 If this happens, bundler will say:

 You have already activated json_pure 1.4.6 but your Gemfile

 requires json_pure 1.4.3. Consider using bundle exec.

 In this situation, you almost certainly want to remove the underlying

 gem with the problematic gem plugin. In general, the authors of these

 plugins (in this case, the gemcutter gem) have released newer versions

 that are more careful in their plugins.

 You can find a list of all the gems containing gem plugins by running

 ruby -rrubygems -e "puts Gem.find_files(?rubygems_plugin.rb?)"

 At the very least, you should remove all but the newest version of each

 gem plugin, and also remove all gem plugins that you aren?t using (gem

 uninstall gem_name).

 December 2021 BUNDLE-EXEC(1)

Page 4/4

