
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'buildah-from.1' command

$ man buildah-from.1

buildah-from(1) General Commands Manual buildah-from(1)

NAME

 buildah-from - Creates a new working container, either from scratch or

 using a specified image as a starting point.

SYNOPSIS

 buildah from [options] image

DESCRIPTION

 Creates a working container based upon the specified image name. If

 the supplied image name is "scratch" a new empty container is created.

 Image names use a "transport":"details" format.

 Multiple transports are supported:

 dir:path

 An existing local directory path containing the manifest, layer tar?

 balls, and signatures in individual files. This is a non-standardized

 format, primarily useful for debugging or noninvasive image inspection.

 docker://docker-reference (Default)

 An image in a registry implementing the "Docker Registry HTTP API

 V2". By default, uses the authorization state in $XDG_RUN?

 TIME_DIR/containers/auth.json, which is set using (buildah login). If

 XDG_RUNTIME_DIR is not set, the default is /run/contain?

 ers/$UID/auth.json. If the authorization state is not found there,

 $HOME/.docker/config.json is checked, which is set using (docker lo?

 gin). Page 1/19

 If docker-reference does not include a registry name, localhost will

 be consulted first, followed by any registries named in the registries

 configuration.

 docker-archive:path

 An image is retrieved as a podman load formatted file.

 docker-daemon:docker-reference

 An image docker-reference stored in the docker daemon's internal

 storage. docker-reference must include either a tag or a digest. Al?

 ternatively, when reading images, the format can also be docker-dae?

 mon:algo:digest (an image ID).

 oci:path:tag**

 An image tag in a directory compliant with "Open Container Image Lay?

 out Specification" at path.

 oci-archive:path:tag

 An image tag in a directory compliant with "Open Container Image Lay?

 out Specification" at path.

 DEPENDENCIES

 Buildah resolves the path to the registry to pull from by using the

 /etc/containers/registries.conf file, containers-registries.conf(5).

 If the buildah from command fails with an "image not known" error,

 first verify that the registries.conf file is installed and configured

 appropriately.

RETURN VALUE

 The container ID of the container that was created. On error 1 is re?

 turned.

OPTIONS

 --add-host=[]

 Add a custom host-to-IP mapping (host:ip)

 Add a line to /etc/hosts. The format is hostname:ip. The --add-host op?

 tion can be set multiple times.

 --arch="ARCH"

 Set the ARCH of the image to be pulled to the provided value instead of

 using the architecture of the host. (Examples: arm, arm64, 386, amd64, Page 2/19

 ppc64le, s390x)

 --authfile path

 Path of the authentication file. Default is ${XDG_\RUNTIME_DIR}/con?

 tainers/auth.json. If XDG_RUNTIME_DIR is not set, the default is

 /run/containers/$UID/auth.json. This file is created using buildah lo?

 gin.

 If the authorization state is not found there, $HOME/.docker/con?

 fig.json is checked, which is set using docker login.

 Note: You can also override the default path of the authentication file

 by setting the REGISTRY_AUTH_FILE environment variable. export REG?

 ISTRY_AUTH_FILE=path

 --cap-add=CAP_xxx

 Add the specified capability to the default set of capabilities which

 will be supplied for subsequent buildah run invocations which use this

 container. Certain capabilities are granted by default; this option

 can be used to add more.

 --cap-drop=CAP_xxx

 Remove the specified capability from the default set of capabilities

 which will be supplied for subsequent buildah run invocations which use

 this container. The CAP_AUDIT_WRITE, CAP_CHOWN, CAP_DAC_OVERRIDE,

 CAP_FOWNER, CAP_FSETID, CAP_KILL, CAP_MKNOD, CAP_NET_BIND_SERVICE,

 CAP_SETFCAP, CAP_SETGID, CAP_SETPCAP, CAP_SETUID, and CAP_SYS_CHROOT

 capabilities are granted by default; this option can be used to remove

 them.

 If a capability is specified to both the --cap-add and --cap-drop op?

 tions, it will be dropped, regardless of the order in which the options

 were given.

 --cert-dir path

 Use certificates at path (*.crt, *.cert, *.key) to connect to the reg?

 istry. The default certificates directory is /etc/containers/certs.d.

 --cgroup-parent=""

 Path to cgroups under which the cgroup for the container will be cre?

 ated. If the path is not absolute, the path is considered to be rela? Page 3/19

 tive to the cgroups path of the init process. Cgroups will be created

 if they do not already exist.

 --cgroupns how

 Sets the configuration for IPC namespaces when the container is subse?

 quently used for buildah run. The configured value can be "" (the

 empty string) or "private" to indicate that a new cgroup namespace

 should be created, or it can be "host" to indicate that the cgroup

 namespace in which buildah itself is being run should be reused.

 --cidfile ContainerIDFile

 Write the container ID to the file.

 --cpu-period=0

 Limit the CPU CFS (Completely Fair Scheduler) period

 Limit the container's CPU usage. This flag tells the kernel to restrict

 the container's CPU usage to the period you specify.

 --cpu-quota=0

 Limit the CPU CFS (Completely Fair Scheduler) quota

 Limit the container's CPU usage. By default, containers run with the

 full CPU resource. This flag tells the kernel to restrict the con?

 tainer's CPU usage to the quota you specify.

 --cpu-shares, -c=0

 CPU shares (relative weight)

 By default, all containers get the same proportion of CPU cycles. This

 proportion can be modified by changing the container's CPU share

 weighting relative to the weighting of all other running containers.

 To modify the proportion from the default of 1024, use the --cpu-shares

 flag to set the weighting to 2 or higher.

 The proportion will only apply when CPU-intensive processes are run?

 ning. When tasks in one container are idle, other containers can use

 the left-over CPU time. The actual amount of CPU time will vary depend?

 ing on the number of containers running on the system.

 For example, consider three containers, one has a cpu-share of 1024 and

 two others have a cpu-share setting of 512. When processes in all three

 containers attempt to use 100% of CPU, the first container would re? Page 4/19

 ceive 50% of the total CPU time. If you add a fourth container with a

 cpu-share of 1024, the first container only gets 33% of the CPU. The

 remaining containers receive 16.5%, 16.5% and 33% of the CPU.

 On a multi-core system, the shares of CPU time are distributed over all

 CPU cores. Even if a container is limited to less than 100% of CPU

 time, it can use 100% of each individual CPU core.

 For example, consider a system with more than three cores. If you start

 one container {C0} with -c=512 running one process, and another con?

 tainer {C1} with -c=1024 running two processes, this can result in the

 following division of CPU shares:

 PID container CPU CPU share

 100 {C0} 0 100% of CPU0

 101 {C1} 1 100% of CPU1

 102 {C1} 2 100% of CPU2

 --cpuset-cpus=""

 CPUs in which to allow execution (0-3, 0,1)

 --cpuset-mems=""

 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effec?

 tive on NUMA systems.

 If you have four memory nodes on your system (0-3), use --cpuset-

 mems=0,1 then processes in your container will only use memory from the

 first two memory nodes.

 --creds creds

 The [username[:password]] to use to authenticate with the registry if

 required. If one or both values are not supplied, a command line

 prompt will appear and the value can be entered. The password is en?

 tered without echo.

 --decryption-key key[:passphrase]

 The [key[:passphrase]] to be used for decryption of images. Key can

 point to keys and/or certificates. Decryption will be tried with all

 keys. If the key is protected by a passphrase, it is required to be

 passed in the argument and omitted otherwise.

 --device=device Page 5/19

 Add a host device or devices under a directory to the container. The

 format is <device-on-host>[:<device-on-container>][:<permissions>]

 (e.g. --device=/dev/sdc:/dev/xvdc:rwm)

 --dns=[]

 Set custom DNS servers

 This option can be used to override the DNS configuration passed to the

 container. Typically this is necessary when the host DNS configuration

 is invalid for the container (e.g., 127.0.0.1). When this is the case

 the --dns flag is necessary for every run.

 The special value none can be specified to disable creation of /etc/re?

 solv.conf in the container by Buildah. The /etc/resolv.conf file in the

 image will be used without changes.

 --dns-option=[]

 Set custom DNS options

 --dns-search=[]

 Set custom DNS search domains

 --format, -f oci | docker

 Control the format for the built image's manifest and configuration

 data. Recognized formats include oci (OCI image-spec v1.0, the de?

 fault) and docker (version 2, using schema format 2 for the manifest).

 Note: You can also override the default format by setting the BUIL?

 DAH_FORMAT environment variable. export BUILDAH_FORMAT=docker

 --group-add=group | keep-groups

 Assign additional groups to the primary user running within the con?

 tainer process.

 ? keep-groups is a special flag that tells Buildah to keep the

 supplementary group access.

 Allows container to use the user's supplementary group access. If file

 systems or devices are only accessible by the rootless user's group,

 this flag tells the OCI runtime to pass the group access into the con?

 tainer. Currently only available with the crun OCI runtime. Note: keep-

 groups is exclusive, other groups cannot be specified with this flag.

 --http-proxy Page 6/19

 By default proxy environment variables are passed into the container if

 set for the Buildah process. This can be disabled by setting the

 --http-proxy option to false. The environment variables passed in in?

 clude http_proxy, https_proxy, ftp_proxy, no_proxy, and also the upper

 case versions of those.

 Defaults to true

 --ipc how

 Sets the configuration for IPC namespaces when the container is subse?

 quently used for buildah run. The configured value can be "" (the

 empty string) or "container" to indicate that a new IPC namespace

 should be created, or it can be "host" to indicate that the IPC name?

 space in which Buildah itself is being run should be reused, or it can

 be the path to an IPC namespace which is already in use by another

 process.

 --isolation type

 Controls what type of isolation is used for running processes under

 buildah run. Recognized types include oci (OCI-compatible runtime, the

 default), rootless (OCI-compatible runtime invoked using a modified

 configuration, with --no-new-keyring added to its create invocation,

 reusing the host's network and UTS namespaces, and creating private

 IPC, PID, mount, and user namespaces; the default for unprivileged

 users), and chroot (an internal wrapper that leans more toward ch?

 root(1) than container technology, reusing the host's control group,

 network, IPC, and PID namespaces, and creating private mount and UTS

 namespaces, and creating user namespaces only when they're required for

 ID mapping).

 Note: You can also override the default isolation type by setting the

 BUILDAH_ISOLATION environment variable. export BUILDAH_ISOLATION=oci

 --memory, -m=""

 Memory limit (format: [], where unit = b, k, m or g)

 Allows you to constrain the memory available to a container. If the

 host supports swap memory, then the -m memory setting can be larger

 than physical RAM. If a limit of 0 is specified (not using -m), the Page 7/19

 container's memory is not limited. The actual limit may be rounded up

 to a multiple of the operating system's page size (the value would be

 very large, that's millions of trillions).

 --memory-swap="LIMIT"

 A limit value equal to memory plus swap. Must be used with the -m

 (--memory) flag. The swap LIMIT should always be larger than -m (--mem?

 ory) value. By default, the swap LIMIT will be set to double the value

 of --memory.

 The format of LIMIT is <number>[<unit>]. Unit can be b (bytes), k

 (kilobytes), m (megabytes), or g (gigabytes). If you don't specify a

 unit, b is used. Set LIMIT to -1 to enable unlimited swap.

 --name name

 A name for the working container

 --network how, --net how

 Sets the configuration for network namespaces when the container is

 subsequently used for buildah run. The configured value can be "" (the

 empty string) or "container" to indicate that a new network namespace

 should be created, or it can be "host" to indicate that the network

 namespace in which Buildah itself is being run should be reused, or it

 can be the path to a network namespace which is already in use by an?

 other process.

 --os="OS"

 Set the OS of the image to be pulled to the provided value instead of

 using the current operating system of the host.

 --pid how

 Sets the configuration for PID namespaces when the container is subse?

 quently used for buildah run. The configured value can be "" (the

 empty string) or "container" to indicate that a new PID namespace

 should be created, or it can be "host" to indicate that the PID name?

 space in which Buildah itself is being run should be reused, or it can

 be the path to a PID namespace which is already in use by another

 process.

 --platform="OS/ARCH[/VARIANT]" Page 8/19

 Set the OS/ARCH of the image to be pulled to the provided value instead

 of using the current operating system and architecture of the host (for

 example linux/arm).

 OS/ARCH pairs are those used by the Go Programming Language. In sev?

 eral cases the ARCH value for a platform differs from one produced by

 other tools such as the arch command. Valid OS and architecture name

 combinations are listed as values for $GOOS and $GOARCH at

 https://golang.org/doc/install/source#environment, and can also be

 found by running go tool dist list.

 While buildah from is happy to pull an image for any platform that ex?

 ists, buildah run will not be able to run binaries provided by that im?

 age without the help of emulation provided by packages like qemu-user-

 static.

 NOTE: The --platform option may not be used in combination with the

 --arch, --os, or --variant options.

 --pull

 When the flag is enabled or set explicitly to true (with --pull=true),

 attempt to pull the latest image from the registries listed in reg?

 istries.conf if a local image does not exist or the image is newer than

 the one in storage. Raise an error if the image is not in any listed

 registry and is not present locally.

 If the flag is disabled (with --pull=false), do not pull the image from

 the registry, use only the local version. Raise an error if the image

 is not present locally.

 If the pull flag is set to always (with --pull=always), pull the image

 from the first registry it is found in as listed in registries.conf.

 Raise an error if not found in the registries, even if the image is

 present locally.

 If the pull flag is set to never (with --pull=never), Do not pull the

 image from the registry, use only the local version. Raise an error if

 the image is not present locally.

 Defaults to true.

 --quiet, -q Page 9/19

 If an image needs to be pulled from the registry, suppress progress

 output.

 --retry attempts

 Number of times to retry in case of failure when performing pull of im?

 ages from registry.

 Defaults to 3.

 --retry-delay duration

 Duration of delay between retry attempts in case of failure when per?

 forming pull of images from registry.

 Defaults to 2s.

 --security-opt=[]

 Security Options

 "label=user:USER" : Set the label user for the container

 "label=role:ROLE" : Set the label role for the container

 "label=type:TYPE" : Set the label type for the container

 "label=level:LEVEL" : Set the label level for the container

 "label=disable" : Turn off label confinement for the container

 "no-new-privileges" : Not supported

 "seccomp=unconfined" : Turn off seccomp confinement for the container

 "seccomp=profile.json : White listed syscalls seccomp Json file to

 be used as a seccomp filter

 "apparmor=unconfined" : Turn off apparmor confinement for the container

 "apparmor=your-profile" : Set the apparmor confinement profile for

 the container

 --shm-size=""

 Size of /dev/shm. The format is <number><unit>. number must be greater

 than 0. Unit is optional and can be b (bytes), k (kilobytes),

 m(megabytes), or g (gigabytes). If you omit the unit, the system uses

 bytes. If you omit the size entirely, the system uses 64m.

 --tls-verify bool-value

 Require HTTPS and verification of certificates when talking to con?

 tainer registries (defaults to true). TLS verification cannot be used

 when talking to an insecure registry. Page 10/19

 --ulimit type=soft-limit[:hard-limit]

 Specifies resource limits to apply to processes launched during buildah

 run. This option can be specified multiple times. Recognized resource

 types include:

 "core": maximum core dump size (ulimit -c)

 "cpu": maximum CPU time (ulimit -t)

 "data": maximum size of a process's data segment (ulimit -d)

 "fsize": maximum size of new files (ulimit -f)

 "locks": maximum number of file locks (ulimit -x)

 "memlock": maximum amount of locked memory (ulimit -l)

 "msgqueue": maximum amount of data in message queues (ulimit -q)

 "nice": niceness adjustment (nice -n, ulimit -e)

 "nofile": maximum number of open files (ulimit -n)

 "nofile": maximum number of open files (1048576); when run by root

 "nproc": maximum number of processes (ulimit -u)

 "nproc": maximum number of processes (1048576); when run by root

 "rss": maximum size of a process's (ulimit -m)

 "rtprio": maximum real-time scheduling priority (ulimit -r)

 "rttime": maximum amount of real-time execution between blocking

 syscalls

 "sigpending": maximum number of pending signals (ulimit -i)

 "stack": maximum stack size (ulimit -s)

 --userns how

 Sets the configuration for user namespaces when the container is subse?

 quently used for buildah run. The configured value can be "" (the

 empty string) or "container" to indicate that a new user namespace

 should be created, it can be "host" to indicate that the user namespace

 in which Buildah itself is being run should be reused, or it can be the

 path to an user namespace which is already in use by another process.

 --userns-gid-map mapping

 Directly specifies a GID mapping which should be used to set ownership,

 at the filesystem level, on the working container's contents. Commands

 run when handling RUN instructions will default to being run in their Page 11/19

 own user namespaces, configured using the UID and GID maps.

 Entries in this map take the form of one or more colon-separated

 triples of a starting in-container GID, a corresponding starting host-

 level GID, and the number of consecutive IDs which the map entry repre?

 sents.

 This option overrides the remap-gids setting in the options section of

 /etc/containers/storage.conf.

 If this option is not specified, but a global --userns-gid-map setting

 is supplied, settings from the global option will be used.

 --userns-gid-map-group mapping

 Directly specifies a GID mapping which should be used to set ownership,

 at the filesystem level, on the container's contents. Commands run us?

 ing buildah run will default to being run in their own user namespaces,

 configured using the UID and GID maps.

 Entries in this map take the form of one or more triples of a starting

 in-container GID, a corresponding starting host-level GID, and the num?

 ber of consecutive IDs which the map entry represents.

 This option overrides the remap-gids setting in the options section of

 /etc/containers/storage.conf.

 If this option is not specified, but a global --userns-gid-map setting

 is supplied, settings from the global option will be used.

 If none of --userns-uid-map-user, --userns-gid-map-group, or --userns-

 gid-map are specified, but --userns-uid-map is specified, the GID map

 will be set to use the same numeric values as the UID map.

 NOTE: When this option is specified by a rootless user, the specified

 mappings are relative to the rootless usernamespace in the container,

 rather than being relative to the host as it would be when run rootful.

 --userns-gid-map-group group

 Specifies that a GID mapping which should be used to set ownership, at

 the filesystem level, on the container's contents, can be found in en?

 tries in the /etc/subgid file which correspond to the specified group.

 Commands run using buildah run will default to being run in their own

 user namespaces, configured using the UID and GID maps. If --userns- Page 12/19

 uid-map-user is specified, but --userns-gid-map-group is not specified,

 Buildah will assume that the specified user name is also a suitable

 group name to use as the default setting for this option.

 --userns-uid-map mapping

 Directly specifies a UID mapping which should be used to set ownership,

 at the filesystem level, on the working container's contents. Commands

 run when handling RUN instructions will default to being run in their

 own user namespaces, configured using the UID and GID maps.

 Entries in this map take the form of one or more colon-separated

 triples of a starting in-container UID, a corresponding starting host-

 level UID, and the number of consecutive IDs which the map entry repre?

 sents.

 This option overrides the remap-uids setting in the options section of

 /etc/containers/storage.conf.

 If this option is not specified, but a global --userns-uid-map setting

 is supplied, settings from the global option will be used.

 --userns-uid-map-user mapping

 Directly specifies a UID mapping which should be used to set ownership,

 at the filesystem level, on the container's contents. Commands run us?

 ing buildah run will default to being run in their own user namespaces,

 configured using the UID and GID maps.

 Entries in this map take the form of one or more triples of a starting

 in-container UID, a corresponding starting host-level UID, and the num?

 ber of consecutive IDs which the map entry represents.

 This option overrides the remap-uids setting in the options section of

 /etc/containers/storage.conf.

 If this option is not specified, but a global --userns-uid-map setting

 is supplied, settings from the global option will be used.

 If none of --userns-uid-map-user, --userns-gid-map-group, or --userns-

 uid-map are specified, but --userns-gid-map is specified, the UID map

 will be set to use the same numeric values as the GID map.

 NOTE: When this option is specified by a rootless user, the specified

 mappings are relative to the rootless usernamespace in the container, Page 13/19

 rather than being relative to the host as it would be when run rootful.

 --userns-uid-map-user user

 Specifies that a UID mapping which should be used to set ownership, at

 the filesystem level, on the container's contents, can be found in en?

 tries in the /etc/subuid file which correspond to the specified user.

 Commands run using buildah run will default to being run in their own

 user namespaces, configured using the UID and GID maps. If --userns-

 gid-map-group is specified, but --userns-uid-map-user is not specified,

 Buildah will assume that the specified group name is also a suitable

 user name to use as the default setting for this option.

 --uts how

 Sets the configuration for UTS namespaces when the container is subse?

 quently used for buildah run. The configured value can be "" (the

 empty string) or "container" to indicate that a new UTS namespace

 should be created, or it can be "host" to indicate that the UTS name?

 space in which Buildah itself is being run should be reused, or it can

 be the path to a UTS namespace which is already in use by another

 process.

 --variant=""

 Set the architecture variant of the image to be pulled.

 --volume, -v[=[HOST-DIR:CONTAINER-DIR[:OPTIONS]]]

 Create a bind mount. If you specify, -v /HOST-DIR:/CONTAINER-DIR, Buil?

 dah

 bind mounts /HOST-DIR in the host to /CONTAINER-DIR in the Buildah

 container. The OPTIONS are a comma delimited list and can be: [1]

 ?#Footnote1?

 ? [rw|ro]

 ? [U]

 ? [z|Z|O]

 ? [[r]shared|[r]slave|[r]private|[r]unbindable]

 The CONTAINER-DIR must be an absolute path such as /src/docs. The HOST-

 DIR must be an absolute path as well. Buildah bind-mounts the HOST-DIR

 to the path you specify. For example, if you supply /foo as the host Page 14/19

 path, Buildah copies the contents of /foo to the container filesystem

 on the host and bind mounts that into the container.

 You can specify multiple -v options to mount one or more mounts to a

 container.

 Write Protected Volume Mounts

 You can add the :ro or :rw suffix to a volume to mount it read-only or

 read-write mode, respectively. By default, the volumes are mounted

 read-write. See examples.

 Chowning Volume Mounts

 By default, Buildah does not change the owner and group of source vol?

 ume directories mounted into containers. If a container is created in a

 new user namespace, the UID and GID in the container may correspond to

 another UID and GID on the host.

 The :U suffix tells Buildah to use the correct host UID and GID based

 on the UID and GID within the container, to change the owner and group

 of the source volume.

 Labeling Volume Mounts

 Labeling systems like SELinux require that proper labels are placed on

 volume content mounted into a container. Without a label, the security

 system might prevent the processes running inside the container from

 using the content. By default, Buildah does not change the labels set

 by the OS.

 To change a label in the container context, you can add either of two

 suffixes :z or :Z to the volume mount. These suffixes tell Buildah to

 relabel file objects on the shared volumes. The z option tells Buildah

 that two containers share the volume content. As a result, Buildah la?

 bels the content with a shared content label. Shared volume labels al?

 low all containers to read/write content. The Z option tells Buildah

 to label the content with a private unshared label. Only the current

 container can use a private volume.

 Overlay Volume Mounts

 The :O flag tells Buildah to mount the directory from the host as a

 temporary storage using the Overlay file system. The RUN command con? Page 15/19

 tainers are allowed to modify contents within the mountpoint and are

 stored in the container storage in a separate directory. In Overlay FS

 terms the source directory will be the lower, and the container storage

 directory will be the upper. Modifications to the mount point are de?

 stroyed when the RUN command finishes executing, similar to a tmpfs

 mount point.

 Any subsequent execution of RUN commands sees the original source di?

 rectory content, any changes from previous RUN commands no longer ex?

 ist.

 One use case of the overlay mount is sharing the package cache from the

 host into the container to allow speeding up builds.

 Note:

 - The `O` flag is not allowed to be specified with the `Z` or `z` flags. Content mounted into the container is labeled

with the private label.

 On SELinux systems, labels in the source directory need to be readable by the container label. If not, SELinux

container separation must be disabled for the container to work.

 - Modification of the directory volume mounted into the container with an overlay mount can cause unexpected

failures. It is recommended that you do not modify the directory until the container finishes running.

 By default bind mounted volumes are private. That means any mounts done

 inside container will not be visible on the host and vice versa. This

 behavior can be changed by specifying a volume mount propagation prop?

 erty.

 When the mount propagation policy is set to shared, any mounts com?

 pleted inside the container on that volume will be visible to both the

 host and container. When the mount propagation policy is set to slave,

 one way mount propagation is enabled and any mounts completed on the

 host for that volume will be visible only inside of the container. To

 control the mount propagation property of the volume use the

 :[r]shared, :[r]slave, [r]private or [r]unbindablepropagation flag. The

 propagation property can be specified only for bind mounted volumes and

 not for internal volumes or named volumes. For mount propagation to

 work on the source mount point (the mount point where source dir is

 mounted on) it has to have the right propagation properties. For shared Page 16/19

 volumes, the source mount point has to be shared. And for slave vol?

 umes, the source mount has to be either shared or slave. [1] ?#Foot?

 note1?

 Use df <source-dir> to determine the source mount and then use findmnt

 -o TARGET,PROPAGATION <source-mount-dir> to determine propagation prop?

 erties of source mount, if findmnt utility is not available, the source

 mount point can be determined by looking at the mount entry in

 /proc/self/mountinfo. Look at optional fields and see if any propaga?

 tion properties are specified. shared:X means the mount is shared,

 master:X means the mount is slave and if nothing is there that means

 the mount is private. [1] ?#Footnote1?

 To change propagation properties of a mount point use the mount com?

 mand. For example, to bind mount the source directory /foo do mount

 --bind /foo /foo and mount --make-private --make-shared /foo. This will

 convert /foo into a shared mount point. The propagation properties of

 the source mount can be changed directly. For instance if / is the

 source mount for /foo, then use mount --make-shared / to convert / into

 a shared mount.

EXAMPLE

 buildah from --pull imagename

 buildah from --pull docker://myregistry.example.com/imagename

 buildah from docker-daemon:imagename:imagetag

 buildah from --name mycontainer docker-archive:filename

 buildah from oci-archive:filename

 buildah from --name mycontainer dir:directoryname

 buildah from --pull-always --name "mycontainer" myregistry.exam?

 ple.com/imagename

 buildah from --tls-verify=false myregistry/myrepository/imagename:im?

 agetag

 buildah from --creds=myusername:mypassword --cert-dir ~/auth myreg?

 istry/myrepository/imagename:imagetag

 buildah from --authfile=/tmp/auths/myauths.json myregistry/myreposi?

 tory/imagename:imagetag Page 17/19

 buildah from --memory 40m --cpu-shares 2 --cpuset-cpus 0,2 --security-

 opt label=level:s0:c100,c200 myregistry/myrepository/imagename:imagetag

 buildah from --ulimit nofile=1024:1028 --cgroup-parent

 /path/to/cgroup/parent myregistry/myrepository/imagename:imagetag

 buildah from --volume /home/test:/myvol:ro,Z myregistry/myreposi?

 tory/imagename:imagetag

 buildah from -v /home/test:/myvol:z,U myregistry/myrepository/image?

 name:imagetag

 buildah from -v /var/lib/yum:/var/lib/yum:O myregistry/myrepository/im?

 agename:imagetag

 buildah from --arch=arm --variant v7 myregistry/myrepository/image?

 name:imagetag

ENVIRONMENT

 BUILD_REGISTRY_SOURCES

 BUILD_REGISTRY_SOURCES, if set, is treated as a JSON object which con?

 tains lists of registry names under the keys insecureRegistries,

 blockedRegistries, and allowedRegistries.

 When pulling an image from a registry, if the name of the registry

 matches any of the items in the blockedRegistries list, the image pull

 attempt is denied. If there are registries in the allowedRegistries

 list, and the registry's name is not in the list, the pull attempt is

 denied.

 TMPDIR The TMPDIR environment variable allows the user to specify where

 temporary files are stored while pulling and pushing images. Defaults

 to '/var/tmp'.

FILES

 registries.conf (/etc/containers/registries.conf)

 registries.conf is the configuration file which specifies which con?

 tainer registries should be consulted when completing image names which

 do not include a registry or domain portion.

 policy.json (/etc/containers/policy.json)

 Signature policy file. This defines the trust policy for container im?

 ages. Controls which container registries can be used for image, and Page 18/19

 whether or not the tool should trust the images.

SEE ALSO

 buildah(1), buildah-pull(1), buildah-login(1), docker-login(1), name?

 spaces(7), pid_namespaces(7), containers-policy.json(5), containers-

 registries.conf(5), user_namespaces(7)

FOOTNOTES

 1: The Buildah project is committed to inclusivity, a core value of

 open source. The master and slave mount propagation terminology used

 here is problematic and divisive, and should be changed. However, these

 terms are currently used within the Linux kernel and must be used as-is

 at this time. When the kernel maintainers rectify this usage, Buildah

 will follow suit immediately.

buildah March 2017 buildah-from(1)

Page 19/19

