
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'buildah-build.1' command

$ man buildah-build.1

buildah-build(1) General Commands Manual buildah-build(1)

NAME

 buildah-build - Build an image using instructions from Containerfiles

SYNOPSIS

 buildah build [options] [context]

 buildah bud [options] [context]

DESCRIPTION

 Builds an image using instructions from one or more Containerfiles or

 Dockerfiles and a specified build context directory. A Containerfile

 uses the same syntax as a Dockerfile internally. For this document, a

 file referred to as a Containerfile can be a file named either 'Con?

 tainerfile' or 'Dockerfile'.

 The build context directory can be specified as the http(s) URL of an

 archive, git repository or Containerfile.

 If no context directory is specified, then Buildah will assume the cur?

 rent working directory as build context, which should contain a Con?

 tainerfile.

 Containerfiles ending with a ".in" suffix will be preprocessed via

 cpp(1). This can be useful to decompose Containerfiles into several

 reusable parts that can be used via CPP's #include directive. Notice,

 a Containerfile.in file can still be used by other tools when manually

 preprocessing them via cpp -E. Any comments (Lines beginning with #)

 in included Containerfile(s) that are not preprocess commands, will be Page 1/31

 printed as warnings during builds.

 When the URL is an archive, the contents of the URL is downloaded to a

 temporary location and extracted before execution.

 When the URL is a Containerfile, the file is downloaded to a temporary

 location.

 When a Git repository is set as the URL, the repository is cloned lo?

 cally and then used as the build context. A non-default branch (or

 commit ID) and subdirectory of the cloned git repository can be used by

 including their names at the end of the URL in the form myrepo.git#my?

 branch:subdir, myrepo.git#mycommit:subdir, or myrepo.git#:subdir if the

 subdirectory should be used from the default branch.

OPTIONS

 --add-host=[]

 Add a custom host-to-IP mapping (host:ip)

 Add a line to /etc/hosts. The format is hostname:ip. The --add-host op?

 tion can be set multiple times. Conflicts with the --no-hosts option.

 --all-platforms

 Instead of building for a set of platforms specified using the --plat?

 form option, inspect the build's base images, and build for all of the

 platforms for which they are all available. Stages that use scratch as

 a starting point can not be inspected, so at least one non-scratch

 stage must be present for detection to work usefully.

 --annotation annotation[=value]

 Add an image annotation (e.g. annotation=value) to the image metadata.

 Can be used multiple times. If annotation is named, but neither = nor

 a value is provided, then the annotation is set to an empty value.

 Note: this information is not present in Docker image formats, so it is

 discarded when writing images in Docker formats.

 --arch="ARCH"

 Set the ARCH of the image to be built, and that of the base image to be

 pulled, if the build uses one, to the provided value instead of using

 the architecture of the host. (Examples: arm, arm64, 386, amd64,

 ppc64le, s390x) Page 2/31

 --authfile path

 Path of the authentication file. Default is ${XDG_\RUNTIME_DIR}/con?

 tainers/auth.json. If XDG_RUNTIME_DIR is not set, the default is

 /run/containers/$UID/auth.json. This file is created using buildah lo?

 gin.

 If the authorization state is not found there, $HOME/.docker/con?

 fig.json is checked, which is set using docker login.

 Note: You can also override the default path of the authentication file

 by setting the REGISTRY_AUTH_FILE environment variable. export REG?

 ISTRY_AUTH_FILE=path

 --build-arg arg=value

 Specifies a build argument and its value, which will be interpolated in

 instructions read from the Containerfiles in the same way that environ?

 ment variables are, but which will not be added to environment variable

 list in the resulting image's configuration.

 Please refer to the BUILD TIME VARIABLES ?#build-time-variables? sec?

 tion for the list of variables that can be overridden within the Con?

 tainerfile at run time.

 --build-context name=value

 Specify an additional build context using its short name and its loca?

 tion. Additional build contexts can be referenced in the same manner as

 we access different stages in COPY instruction.

 Valid values could be: * Local directory ? e.g. --build-context

 project2=../path/to/project2/src * HTTP URL to a tarball ? e.g.

 --build-context src=https://example.org/releases/src.tar * Container

 image ? specified with a container-image:// prefix, e.g. --build-con?

 text alpine=container-image://alpine:3.15, (also accepts docker://,

 docker-image://)

 On the Containerfile side, you can reference the build context on all

 commands that accept the ?from? parameter. Here?s how that might look:

 FROM [name]

 COPY --from=[name] ...

 RUN --mount=from=[name] ? Page 3/31

 The value of [name] is matched with the following priority order:

 ? Named build context defined with --build-context [name]=..

 ? Stage defined with AS [name] inside Containerfile

 ? Image [name], either local or in a remote registry

 --cache-from

 Repository to utilize as a potential list of cache sources. When speci?

 fied, Buildah will try to look for cache images in the specified repos?

 itories and will attempt to pull cache images instead of actually exe?

 cuting the build steps locally. Buildah will only attempt to pull pre?

 viously cached images if they are considered as valid cache hits.

 Use the --cache-to option to populate a remote repository or reposito?

 ries with cache content.

 Example

 # populate a cache and also consult it

 buildah build -t test --layers --cache-to registry/myrepo/cache --cache-from registry/myrepo/cache .

 Note: --cache-from option is ignored unless --layers is specified.

 --cache-to

 Set this flag to specify list of remote repositories that will be used

 to store cache images. Buildah will attempt to push newly built cache

 image to the remote repositories.

 Note: Use the --cache-from option in order to use cache content in a

 remote repository.

 Example

 # populate a cache and also consult it

 buildah build -t test --layers --cache-to registry/myrepo/cache --cache-from registry/myrepo/cache .

 Note: --cache-to option is ignored unless --layers is specified.

 --cache-ttl duration

 Limit the use of cached images to only consider images with created

 timestamps less than duration ago. For example if --cache-ttl=1h is

 specified, Buildah will only consider intermediate cache images which

 are created under the duration of one hour, and intermediate cache im?

 ages outside this duration will be ignored.

 Note: Setting --cache-ttl=0 manually is equivalent to using --no-cache Page 4/31

 in the implementation since this would effectively mean that user is

 not willing to use cache at all.

 --cap-add=CAP_xxx

 When executing RUN instructions, run the command specified in the in?

 struction with the specified capability added to its capability set.

 Certain capabilities are granted by default; this option can be used to

 add more.

 --cap-drop=CAP_xxx

 When executing RUN instructions, run the command specified in the in?

 struction with the specified capability removed from its capability

 set. The CAP_AUDIT_WRITE, CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER,

 CAP_FSETID, CAP_KILL, CAP_MKNOD, CAP_NET_BIND_SERVICE, CAP_SETFCAP,

 CAP_SETGID, CAP_SETPCAP, CAP_SETUID, and CAP_SYS_CHROOT capabilities

 are granted by default; this option can be used to remove them.

 If a capability is specified to both the --cap-add and --cap-drop op?

 tions, it will be dropped, regardless of the order in which the options

 were given.

 --cert-dir path

 Use certificates at path (*.crt, *.cert, *.key) to connect to the reg?

 istry. The default certificates directory is /etc/containers/certs.d.

 --cgroup-parent=""

 Path to cgroups under which the cgroup for the container will be cre?

 ated. If the path is not absolute, the path is considered to be rela?

 tive to the cgroups path of the init process. Cgroups will be created

 if they do not already exist.

 --cgroupns how

 Sets the configuration for cgroup namespaces when handling RUN instruc?

 tions. The configured value can be "" (the empty string) or "private"

 to indicate that a new cgroup namespace should be created, or it can be

 "host" to indicate that the cgroup namespace in which buildah itself is

 being run should be reused.

 --compress

 This option is added to be aligned with other containers CLIs. Buildah Page 5/31

 doesn't send a copy of the context directory to a daemon or a remote

 server. Thus, compressing the data before sending it is irrelevant to

 Buildah.

 --cpp-flag=""

 Set additional flags to pass to the C Preprocessor cpp(1). Container?

 files ending with a ".in" suffix will be preprocessed via cpp(1). This

 option can be used to pass additional flags to cpp. Note: You can also

 set default CPPFLAGS by setting the BUILDAH_CPPFLAGS environment vari?

 able (e.g., export BUILDAH_CPPFLAGS="-DDEBUG").

 --cpu-period=0

 Set the CPU period for the Completely Fair Scheduler (CFS), which is a

 duration in microseconds. Once the container's CPU quota is used up, it

 will not be scheduled to run until the current period ends. Defaults to

 100000 microseconds.

 On some systems, changing the CPU limits may not be allowed for non-

 root users. For more details, see https://github.com/containers/pod?

 man/blob/main/troubleshooting.md#26-running-containers-with-cpu-limits-

 fails-with-a-permissions-error

 --cpu-quota=0

 Limit the CPU CFS (Completely Fair Scheduler) quota

 Limit the container's CPU usage. By default, containers run with the

 full CPU resource. This flag tells the kernel to restrict the con?

 tainer's CPU usage to the quota you specify.

 On some systems, changing the CPU limits may not be allowed for non-

 root users. For more details, see https://github.com/containers/pod?

 man/blob/main/troubleshooting.md#26-running-containers-with-cpu-limits-

 fails-with-a-permissions-error

 --cpu-shares, -c=0

 CPU shares (relative weight)

 By default, all containers get the same proportion of CPU cycles. This

 proportion can be modified by changing the container's CPU share

 weighting relative to the weighting of all other running containers.

 To modify the proportion from the default of 1024, use the --cpu-shares Page 6/31

 flag to set the weighting to 2 or higher.

 The proportion will only apply when CPU-intensive processes are run?

 ning. When tasks in one container are idle, other containers can use

 the left-over CPU time. The actual amount of CPU time will vary depend?

 ing on the number of containers running on the system.

 For example, consider three containers, one has a cpu-share of 1024 and

 two others have a cpu-share setting of 512. When processes in all three

 containers attempt to use 100% of CPU, the first container would re?

 ceive 50% of the total CPU time. If you add a fourth container with a

 cpu-share of 1024, the first container only gets 33% of the CPU. The

 remaining containers receive 16.5%, 16.5% and 33% of the CPU.

 On a multi-core system, the shares of CPU time are distributed over all

 CPU cores. Even if a container is limited to less than 100% of CPU

 time, it can use 100% of each individual CPU core.

 For example, consider a system with more than three cores. If you start

 one container {C0} with -c=512 running one process, and another con?

 tainer {C1} with -c=1024 running two processes, this can result in the

 following division of CPU shares:

 PID container CPU CPU share

 100 {C0} 0 100% of CPU0

 101 {C1} 1 100% of CPU1

 102 {C1} 2 100% of CPU2

 --cpuset-cpus=""

 CPUs in which to allow execution (0-3, 0,1)

 --cpuset-mems=""

 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effec?

 tive on NUMA systems.

 If you have four memory nodes on your system (0-3), use --cpuset-

 mems=0,1 then processes in your container will only use memory from the

 first two memory nodes.

 --creds creds

 The [username[:password]] to use to authenticate with the registry if

 required. If one or both values are not supplied, a command line Page 7/31

 prompt will appear and the value can be entered. The password is en?

 tered without echo.

 --decryption-key key[:passphrase]

 The [key[:passphrase]] to be used for decryption of images. Key can

 point to keys and/or certificates. Decryption will be tried with all

 keys. If the key is protected by a passphrase, it is required to be

 passed in the argument and omitted otherwise.

 --device=device

 Add a host device to the container. Optional permissions parameter can

 be used to specify device permissions, it is combination of r for read,

 w for write, and m for mknod(2).

 Example: --device=/dev/sdc:/dev/xvdc:rwm.

 Note: if _hostdevice is a symbolic link then it will be resolved first.

 The container will only store the major and minor numbers of the host

 device.

 Note: if the user only has access rights via a group, accessing the de?

 vice from inside a rootless container will fail. The crun(1) runtime

 offers a workaround for this by adding the option --annotation

 run.oci.keep_original_groups=1.

 --disable-compression, -D

 Don't compress filesystem layers when building the image unless it is

 required by the location where the image is being written. This is the

 default setting, because image layers are compressed automatically when

 they are pushed to registries, and images being written to local stor?

 age would only need to be decompressed again to be stored. Compression

 can be forced in all cases by specifying --disable-compression=false.

 --disable-content-trust

 This is a Docker specific option to disable image verification to a

 Container registry and is not supported by Buildah. This flag is a

 NOOP and provided solely for scripting compatibility.

 --dns=[]

 Set custom DNS servers. Invalid if using --dns with --network=none.

 This option can be used to override the DNS configuration passed to the Page 8/31

 container. Typically this is necessary when the host DNS configuration

 is invalid for the container (e.g., 127.0.0.1). When this is the case

 the --dns flag is necessary for every run.

 The special value none can be specified to disable creation of /etc/re?

 solv.conf in the container by Buildah. The /etc/resolv.conf file in the

 image will be used without changes.

 --dns-option=[]

 Set custom DNS options. Invalid if using --dns-option with --net?

 work=none.

 --dns-search=[]

 Set custom DNS search domains. Invalid if using --dns-search with

 --network=none.

 --env env[=value]

 Add a value (e.g. env=value) to the built image. Can be used multiple

 times. If neither = nor a *value* are specified, but env is set in the

 current environment, the value from the current environment will be

 added to the image. The value of env can be overridden by ENV instruc?

 tions in the Containerfile. To remove an environment variable from the

 built image, use the --unsetenv option.

 --file, -f Containerfile

 Specifies a Containerfile which contains instructions for building the

 image, either a local file or an http or https URL. If more than one

 Containerfile is specified, FROM instructions will only be accepted

 from the first specified file.

 If a local file is specified as the Containerfile and it does not ex?

 ist, the context directory will be prepended to the local file value.

 If you specify -f -, the Containerfile contents will be read from

 stdin.

 --force-rm bool-value

 Always remove intermediate containers after a build, even if the build

 fails (default false).

 --format

 Control the format for the built image's manifest and configuration Page 9/31

 data. Recognized formats include oci (OCI image-spec v1.0, the de?

 fault) and docker (version 2, using schema format 2 for the manifest).

 Note: You can also override the default format by setting the BUIL?

 DAH_FORMAT environment variable. export BUILDAH_FORMAT=docker

 --from

 Overrides the first FROM instruction within the Containerfile. If

 there are multiple FROM instructions in a Containerfile, only the first

 is changed.

 --group-add=group | keep-groups

 Assign additional groups to the primary user running within the con?

 tainer process.

 ? keep-groups is a special flag that tells Buildah to keep the

 supplementary group access.

 Allows container to use the user's supplementary group access. If file

 systems or devices are only accessible by the rootless user's group,

 this flag tells the OCI runtime to pass the group access into the con?

 tainer. Currently only available with the crun OCI runtime. Note: keep-

 groups is exclusive, other groups cannot be specified with this flag.

 --help, -h

 Print usage statement

 --hooks-dir path

 Each *.json file in the path configures a hook for buildah build con?

 tainers. For more details on the syntax of the JSON files and the se?

 mantics of hook injection. Buildah currently support both the 1.0.0 and

 0.1.0 hook schemas, although the 0.1.0 schema is deprecated.

 This option may be set multiple times; paths from later options have

 higher precedence.

 For the annotation conditions, buildah uses any annotations set in the

 generated OCI configuration.

 For the bind-mount conditions, only mounts explicitly requested by the

 caller via --volume are considered. Bind mounts that buildah inserts by

 default (e.g. /dev/shm) are not considered.

 If --hooks-dir is unset for root callers, Buildah will currently de? Page 10/31

 fault to /usr/share/containers/oci/hooks.d and /etc/contain?

 ers/oci/hooks.d in order of increasing precedence. Using these defaults

 is deprecated, and callers should migrate to explicitly setting

 --hooks-dir.

 --http-proxy=true

 By default proxy environment variables are passed into the container if

 set for the buildah process. This can be disabled by setting the

 --http-proxy option to false. The environment variables passed in in?

 clude http_proxy, https_proxy, ftp_proxy, no_proxy, and also the upper

 case versions of those.

 --identity-label bool-value

 Adds default identity label io.buildah.version if set. (default true).

 --ignorefile file

 Path to an alternative .containerignore (.dockerignore) file.

 --iidfile ImageIDfile

 Write the built image's ID to the file. When --platform is specified

 more than once, attempting to use this option will trigger an error.

 --ipc how

 Sets the configuration for IPC namespaces when handling RUN instruc?

 tions. The configured value can be "" (the empty string) or "con?

 tainer" to indicate that a new IPC namespace should be created, or it

 can be "host" to indicate that the IPC namespace in which buildah it?

 self is being run should be reused, or it can be the path to an IPC

 namespace which is already in use by another process.

 --isolation type

 Controls what type of isolation is used for running processes as part

 of RUN instructions. Recognized types include oci (OCI-compatible run?

 time, the default), rootless (OCI-compatible runtime invoked using a

 modified configuration, with --no-new-keyring added to its create invo?

 cation, reusing the host's network and UTS namespaces, and creating

 private IPC, PID, mount, and user namespaces; the default for unprivi?

 leged users), and chroot (an internal wrapper that leans more toward

 chroot(1) than container technology, reusing the host's control group, Page 11/31

 network, IPC, and PID namespaces, and creating private mount and UTS

 namespaces, and creating user namespaces only when they're required for

 ID mapping).

 Note: You can also override the default isolation type by setting the

 BUILDAH_ISOLATION environment variable. export BUILDAH_ISOLATION=oci

 --jobs N

 Run up to N concurrent stages in parallel. If the number of jobs is

 greater than 1, stdin will be read from /dev/null. If 0 is specified,

 then there is no limit on the number of jobs that run in parallel.

 --label label[=value]

 Add an image label (e.g. label=value) to the image metadata. Can be

 used multiple times. If label is named, but neither = nor a value is

 provided, then the label is set to an empty value.

 Users can set a special LABEL io.containers.capabilities=CAP1,CAP2,CAP3

 in a Containerfile that specifies the list of Linux capabilities re?

 quired for the container to run properly. This label specified in a

 container image tells container engines, like Podman, to run the con?

 tainer with just these capabilities. The container engine launches the

 container with just the specified capabilities, as long as this list of

 capabilities is a subset of the default list.

 If the specified capabilities are not in the default set, container en?

 gines should print an error message and will run the container with the

 default capabilities.

 --layers bool-value

 Cache intermediate images during the build process (Default is false).

 Note: You can also override the default value of layers by setting the

 BUILDAH_LAYERS environment variable. export BUILDAH_LAYERS=true

 --logfile filename

 Log output which would be sent to standard output and standard error to

 the specified file instead of to standard output and standard error.

 --logsplit bool-value

 If --logfile and --platform is specified following flag allows end-

 users to split log file for each platform into different files with Page 12/31

 naming convention as ${logfile}_${platform-os}_${platform-arch}.

 --manifest listName

 Name of the manifest list to which the built image will be added. Cre?

 ates the manifest list if it does not exist. This option is useful for

 building multi architecture images. If listName does not include a

 registry name component, the registry name localhost will be prepended

 to the list name.

 --memory, -m=""

 Memory limit (format: [], where unit = b, k, m or g)

 Allows you to constrain the memory available to a container. If the

 host supports swap memory, then the -m memory setting can be larger

 than physical RAM. If a limit of 0 is specified (not using -m), the

 container's memory is not limited. The actual limit may be rounded up

 to a multiple of the operating system's page size (the value would be

 very large, that's millions of trillions).

 --memory-swap="LIMIT"

 A limit value equal to memory plus swap. Must be used with the -m

 (--memory) flag. The swap LIMIT should always be larger than -m (--mem?

 ory) value. By default, the swap LIMIT will be set to double the value

 of --memory.

 The format of LIMIT is <number>[<unit>]. Unit can be b (bytes), k

 (kilobytes), m (megabytes), or g (gigabytes). If you don't specify a

 unit, b is used. Set LIMIT to -1 to enable unlimited swap.

 --network, --net=mode

 Sets the configuration for network namespaces when handling RUN in?

 structions.

 Valid mode values are:

 ? none: no networking. Invalid if using --dns, --dns-opt, or

 --dns-search;

 ? host: use the host network stack. Note: the host mode gives

 the container full access to local system services such as D-

 bus and is therefore considered insecure;

 ? ns:path: path to a network namespace to join; Page 13/31

 ? private: create a new namespace for the container (default)

 ? <network name|ID>: Join the network with the given name or ID,

 e.g. use --network mynet to join the network with the name

 mynet. Only supported for rootful users.

 --no-cache

 Do not use existing cached images for the container build. Build from

 the start with a new set of cached layers.

 --no-hosts

 Do not create /etc/hosts for the container.

 By default, Buildah manages /etc/hosts, adding the container's own IP

 address. --no-hosts disables this, and the image's /etc/hosts will be

 preserved unmodified. Conflicts with the --add-host option.

 --omit-history bool-value

 Omit build history information in the built image. (default false).

 This option is useful for the cases where end users explicitly want to

 set --omit-history to omit the optional History from built images or

 when working with images built using build tools that do not include

 History information in their images.

 --os="OS"

 Set the OS of the image to be built, and that of the base image to be

 pulled, if the build uses one, instead of using the current operating

 system of the host.

 --os-feature feature

 Set the name of a required operating system feature for the image which

 will be built. By default, if the image is not based on scratch, the

 base image's required OS feature list is kept, if the base image speci?

 fied any. This option is typically only meaningful when the image's OS

 is Windows.

 If feature has a trailing -, then the feature is removed from the set

 of required features which will be listed in the image.

 --os-version version

 Set the exact required operating system version for the image which

 will be built. By default, if the image is not based on scratch, the Page 14/31

 base image's required OS version is kept, if the base image specified

 one. This option is typically only meaningful when the image's OS is

 Windows, and is typically set in Windows base images, so using this op?

 tion is usually unnecessary.

 --output, -o=""

 Output destination (format: type=local,dest=path)

 The --output (or -o) option extends the default behavior of building a

 container image by allowing users to export the contents of the image

 as files on the local filesystem, which can be useful for generating

 local binaries, code generation, etc.

 The value for --output is a comma-separated sequence of key=value

 pairs, defining the output type and options.

 Supported keys are: - dest: Destination path for exported output. Valid

 value is absolute or relative path, - means the standard output. -

 type: Defines the type of output to be used. Valid values is documented

 below.

 Valid type values are: - local: write the resulting build files to a

 directory on the client-side. - tar: write the resulting files as a

 single tarball (.tar).

 If no type is specified, the value defaults to local. Alternatively,

 instead of a comma-separated sequence, the value of --output can be

 just a destination (in the **dest** format) (e.g.--output some-

 path,--output -) where--output some-pathis treated as if **type=local**

 and--output -` is treated as if type=tar.

 --pid how

 Sets the configuration for PID namespaces when handling RUN instruc?

 tions. The configured value can be "" (the empty string) or "private"

 to indicate that a new PID namespace should be created, or it can be

 "host" to indicate that the PID namespace in which buildah itself is

 being run should be reused, or it can be the path to a PID namespace

 which is already in use by another process.

 --platform="OS/ARCH[/VARIANT]"

 Set the OS/ARCH of the built image (and its base image, if your build Page 15/31

 uses one) to the provided value instead of using the current operating

 system and architecture of the host (for example linux/arm).

 The --platform flag can be specified more than once, or given a comma-

 separated list of values as its argument. When more than one platform

 is specified, the --manifest option should be used instead of the --tag

 option.

 OS/ARCH pairs are those used by the Go Programming Language. In sev?

 eral cases the ARCH value for a platform differs from one produced by

 other tools such as the arch command. Valid OS and architecture name

 combinations are listed as values for $GOOS and $GOARCH at

 https://golang.org/doc/install/source#environment, and can also be

 found by running go tool dist list.

 While buildah bud is happy to use base images and build images for any

 platform that exists, RUN instructions will not be able to succeed

 without the help of emulation provided by packages like qemu-user-

 static.

 NOTE: The --platform option may not be used in combination with the

 --arch, --os, or --variant options.

 --pull

 When the flag is enabled or set explicitly to true (with --pull=true),

 attempt to pull the latest image from the registries listed in reg?

 istries.conf if a local image does not exist or the image is newer than

 the one in storage. Raise an error if the image is not in any listed

 registry and is not present locally.

 If the flag is disabled (with --pull=false), do not pull the image from

 the registry, use only the local version. Raise an error if the image

 is not present locally.

 If the pull flag is set to always (with --pull=always), pull the image

 from the first registry it is found in as listed in registries.conf.

 Raise an error if not found in the registries, even if the image is

 present locally.

 If the pull flag is set to missing (with --pull=missing), pull the im?

 age only if it could not be found in the local containers storage. Page 16/31

 Raise an error if no image could be found and the pull fails.

 If the pull flag is set to never (with --pull=never), Do not pull the

 image from the registry, use only the local version. Raise an error if

 the image is not present locally.

 Defaults to true.

 --quiet, -q

 Suppress output messages which indicate which instruction is being pro?

 cessed, and of progress when pulling images from a registry, and when

 writing the output image.

 --retry attempts

 Number of times to retry in case of failure when performing push/pull

 of images to/from registry.

 Defaults to 3.

 --retry-delay duration

 Duration of delay between retry attempts in case of failure when per?

 forming push/pull of images to/from registry.

 Defaults to 2s.

 --rm bool-value

 Remove intermediate containers after a successful build (default true).

 --runtime path

 The path to an alternate OCI-compatible runtime, which will be used to

 run commands specified by the RUN instruction. Default is runc, or crun

 when machine is configured to use cgroups V2.

 Note: You can also override the default runtime by setting the BUIL?

 DAH_RUNTIME environment variable. export BUILDAH_RUNTIME=/usr/bin/crun

 --runtime-flag flag

 Adds global flags for the container rutime. To list the supported

 flags, please consult the manpages of the selected container runtime.

 Note: Do not pass the leading -- to the flag. To pass the runc flag

 --log-format json to buildah build, the option given would be --run?

 time-flag log-format=json.

 --secret=id=id,src=path

 Pass secret information to be used in the Containerfile for building Page 17/31

 images in a safe way that will not end up stored in the final image, or

 be seen in other stages. The secret will be mounted in the container

 at the default location of /run/secrets/id.

 To later use the secret, use the --mount flag in a RUN instruction

 within a Containerfile:

 RUN --mount=type=secret,id=mysecret cat /run/secrets/mysecret

 --security-opt=[]

 Security Options

 "apparmor=unconfined" : Turn off apparmor confinement for the container

 "apparmor=your-profile" : Set the apparmor confinement profile for

 the container

 "label=user:USER" : Set the label user for the container

 "label=role:ROLE" : Set the label role for the container

 "label=type:TYPE" : Set the label type for the container

 "label=level:LEVEL" : Set the label level for the container

 "label=disable" : Turn off label confinement for the container

 "no-new-privileges" : Disable container processes from gaining addi?

 tional privileges

 "seccomp=unconfined" : Turn off seccomp confinement for the container

 "seccomp=profile.json : White listed syscalls seccomp Json file to

 be used as a seccomp filter

 --shm-size=""

 Size of /dev/shm. The format is <number><unit>. number must be greater

 than 0. Unit is optional and can be b (bytes), k (kilobytes),

 m(megabytes), or g (gigabytes). If you omit the unit, the system uses

 bytes. If you omit the size entirely, the system uses 64m.

 --sign-by fingerprint

 Sign the built image using the GPG key that matches the specified fin?

 gerprint.

 --skip-unused-stages bool-value

 Skip stages in multi-stage builds which don't affect the target stage.

 (Default is true).

 --squash Page 18/31

 Squash all layers, including those from base image(s), into one single

 layer. (Default is false).

 By default, Buildah preserves existing base-image layers and adds only

 one new layer on a build. The --layers option can be used to preserve

 intermediate build layers.

 --ssh=default|id[=socket>|[,]

 SSH agent socket or keys to expose to the build. The socket path can

 be left empty to use the value of default=$SSH_AUTH_SOCK

 To later use the ssh agent, use the --mount flag in a RUN instruction

 within a Containerfile:

 RUN --mount=type=secret,id=id mycmd

 --stdin

 Pass stdin into the RUN containers. Sometimes commands being RUN within

 a Containerfile want to request information from the user. For example

 apt asking for a confirmation for install. Use --stdin to be able to

 interact from the terminal during the build.

 --tag, -t imageName

 Specifies the name which will be assigned to the resulting image if the

 build process completes successfully. If imageName does not include a

 registry name component, the registry name localhost will be prepended

 to the image name.

 --target stageName

 Set the target build stage to build. When building a Containerfile

 with multiple build stages, --target can be used to specify an interme?

 diate build stage by name as the final stage for the resulting image.

 Commands after the target stage will be skipped.

 --timestamp seconds

 Set the create timestamp to seconds since epoch to allow for determin?

 istic builds (defaults to current time). By default, the created time?

 stamp is changed and written into the image manifest with every commit,

 causing the image's sha256 hash to be different even if the sources are

 exactly the same otherwise. When --timestamp is set, the created time?

 stamp is always set to the time specified and therefore not changed, Page 19/31

 allowing the image's sha256 to remain the same. All files committed to

 the layers of the image will be created with the timestamp.

 --tls-verify bool-value

 Require HTTPS and verification of certificates when talking to con?

 tainer registries (defaults to true). TLS verification cannot be used

 when talking to an insecure registry.

 --ulimit type=soft-limit[:hard-limit]

 Specifies resource limits to apply to processes launched when process?

 ing RUN instructions. This option can be specified multiple times.

 Recognized resource types include:

 "core": maximum core dump size (ulimit -c)

 "cpu": maximum CPU time (ulimit -t)

 "data": maximum size of a process's data segment (ulimit -d)

 "fsize": maximum size of new files (ulimit -f)

 "locks": maximum number of file locks (ulimit -x)

 "memlock": maximum amount of locked memory (ulimit -l)

 "msgqueue": maximum amount of data in message queues (ulimit -q)

 "nice": niceness adjustment (nice -n, ulimit -e)

 "nofile": maximum number of open files (ulimit -n)

 "nofile": maximum number of open files (1048576); when run by root

 "nproc": maximum number of processes (ulimit -u)

 "nproc": maximum number of processes (1048576); when run by root

 "rss": maximum size of a process's (ulimit -m)

 "rtprio": maximum real-time scheduling priority (ulimit -r)

 "rttime": maximum amount of real-time execution between blocking

 syscalls

 "sigpending": maximum number of pending signals (ulimit -i)

 "stack": maximum stack size (ulimit -s)

 --unsetenv env

 Unset environment variables from the final image.

 --userns how

 Sets the configuration for user namespaces when handling RUN instruc?

 tions. The configured value can be "" (the empty string) , "private" Page 20/31

 or "auto" to indicate that a new user namespace should be created, it

 can be "host" to indicate that the user namespace in which buildah it?

 self is being run should be reused, or it can be the path to an user

 namespace which is already in use by another process.

 auto: automatically create a unique user namespace.

 The --userns=auto flag, requires that the user name containers and a

 range of subordinate user ids that the build container is allowed to

 use be specified in the /etc/subuid and /etc/subgid files.

 Example: containers:2147483647:2147483648.

 Buildah allocates unique ranges of UIDs and GIDs from the containers

 subordinate user ids. The size of the ranges is based on the number of

 UIDs required in the image. The number of UIDs and GIDs can be overrid?

 den with the size option.

 Valid auto options:

 ? gidmapping=CONTAINER_GID:HOST_GID:SIZE: to force a GID mapping

 to be present in the user namespace.

 ? size=SIZE: to specify an explicit size for the automatic user

 namespace. e.g. --userns=auto:size=8192. If size is not speci?

 fied, auto will estimate a size for the user namespace.

 ? uidmapping=CONTAINER_UID:HOST_UID:SIZE: to force a UID mapping

 to be present in the user namespace.

 --userns-gid-map mapping

 Directly specifies a GID mapping which should be used to set ownership,

 at the filesystem level, on the working container's contents. Commands

 run when handling RUN instructions will default to being run in their

 own user namespaces, configured using the UID and GID maps.

 Entries in this map take the form of one or more colon-separated

 triples of a starting in-container GID, a corresponding starting host-

 level GID, and the number of consecutive IDs which the map entry repre?

 sents.

 This option overrides the remap-gids setting in the options section of

 /etc/containers/storage.conf.

 If this option is not specified, but a global --userns-gid-map setting Page 21/31

 is supplied, settings from the global option will be used.

 --userns-gid-map-group group

 Specifies that a GID mapping which should be used to set ownership, at

 the filesystem level, on the working container's contents, can be found

 in entries in the /etc/subgid file which correspond to the specified

 group. Commands run when handling RUN instructions will default to be?

 ing run in their own user namespaces, configured using the UID and GID

 maps. If --userns-uid-map-user is specified, but --userns-gid-map-

 group is not specified, buildah will assume that the specified user

 name is also a suitable group name to use as the default setting for

 this option.

 Users can specify the maps directly using --userns-gid-map described in

 the buildah(1) man page.

 NOTE: When this option is specified by a rootless user, the specified

 mappings are relative to the rootless usernamespace in the container,

 rather than being relative to the host as it would be when run rootful.

 --userns-uid-map mapping

 Directly specifies a UID mapping which should be used to set ownership,

 at the filesystem level, on the working container's contents. Commands

 run when handling RUN instructions will default to being run in their

 own user namespaces, configured using the UID and GID maps.

 Entries in this map take the form of one or more colon-separated

 triples of a starting in-container UID, a corresponding starting host-

 level UID, and the number of consecutive IDs which the map entry repre?

 sents.

 This option overrides the remap-uids setting in the options section of

 /etc/containers/storage.conf.

 If this option is not specified, but a global --userns-uid-map setting

 is supplied, settings from the global option will be used.

 --userns-uid-map-user user

 Specifies that a UID mapping which should be used to set ownership, at

 the filesystem level, on the working container's contents, can be found

 in entries in the /etc/subuid file which correspond to the specified Page 22/31

 user. Commands run when handling RUN instructions will default to be?

 ing run in their own user namespaces, configured using the UID and GID

 maps. If --userns-gid-map-group is specified, but --userns-uid-map-

 user is not specified, buildah will assume that the specified group

 name is also a suitable user name to use as the default setting for

 this option.

 NOTE: When this option is specified by a rootless user, the specified

 mappings are relative to the rootless usernamespace in the container,

 rather than being relative to the host as it would be when run rootful.

 --uts how

 Sets the configuration for UTS namespaces when handling RUN instruc?

 tions. The configured value can be "" (the empty string) or "con?

 tainer" to indicate that a new UTS namespace should be created, or it

 can be "host" to indicate that the UTS namespace in which buildah it?

 self is being run should be reused, or it can be the path to a UTS

 namespace which is already in use by another process.

 --variant=""

 Set the architecture variant of the image to be pulled.

 --volume, -v[=[HOST-DIR:CONTAINER-DIR[:OPTIONS]]]

 Mount a host directory into containers when executing RUN instructions

 during the build. The OPTIONS are a comma delimited list and can be:

 [1] ?#Footnote1?

 ? [rw|ro]

 ? [U]

 ? [z|Z|O]

 ? [[r]shared|[r]slave|[r]private]

 The CONTAINER-DIR must be an absolute path such as /src/docs. The HOST-

 DIR must be an absolute path as well. Buildah bind-mounts the HOST-DIR

 to the path you specify. For example, if you supply /foo as the host

 path, Buildah copies the contents of /foo to the container filesystem

 on the host and bind mounts that into the container.

 You can specify multiple -v options to mount one or more mounts to a

 container. Page 23/31

 Write Protected Volume Mounts

 You can add the :ro or :rw suffix to a volume to mount it read-only or

 read-write mode, respectively. By default, the volumes are mounted

 read-write. See examples.

 Chowning Volume Mounts

 By default, Buildah does not change the owner and group of source vol?

 ume directories mounted into containers. If a container is created in a

 new user namespace, the UID and GID in the container may correspond to

 another UID and GID on the host.

 The :U suffix tells Buildah to use the correct host UID and GID based

 on the UID and GID within the container, to change the owner and group

 of the source volume.

 Labeling Volume Mounts

 Labeling systems like SELinux require that proper labels are placed on

 volume content mounted into a container. Without a label, the security

 system might prevent the processes running inside the container from

 using the content. By default, Buildah does not change the labels set

 by the OS.

 To change a label in the container context, you can add either of two

 suffixes :z or :Z to the volume mount. These suffixes tell Buildah to

 relabel file objects on the shared volumes. The z option tells Buildah

 that two containers share the volume content. As a result, Buildah la?

 bels the content with a shared content label. Shared volume labels al?

 low all containers to read/write content. The Z option tells Buildah

 to label the content with a private unshared label. Only the current

 container can use a private volume.

 Overlay Volume Mounts

 The :O flag tells Buildah to mount the directory from the host as a

 temporary storage using the Overlay file system. The RUN command con?

 tainers are allowed to modify contents within the mountpoint and are

 stored in the container storage in a separate directory. In Overlay FS

 terms the source directory will be the lower, and the container storage

 directory will be the upper. Modifications to the mount point are de? Page 24/31

 stroyed when the RUN command finishes executing, similar to a tmpfs

 mount point.

 Any subsequent execution of RUN commands sees the original source di?

 rectory content, any changes from previous RUN commands no longer ex?

 ist.

 One use case of the overlay mount is sharing the package cache from the

 host into the container to allow speeding up builds.

 Note:

 - The `O` flag is not allowed to be specified with the `Z` or `z` flags. Content mounted into the container is labeled

with the private label.

 On SELinux systems, labels in the source directory must be readable by the container label. If not, SELinux

container separation must be disabled for the container to work.

 - Modification of the directory volume mounted into the container with an overlay mount can cause unexpected

failures. It is recommended that you do not modify the directory until the container finishes running.

 By default bind mounted volumes are private. That means any mounts done

 inside container will not be visible on the host and vice versa. This

 behavior can be changed by specifying a volume mount propagation prop?

 erty.

 When the mount propagation policy is set to shared, any mounts com?

 pleted inside the container on that volume will be visible to both the

 host and container. When the mount propagation policy is set to slave,

 one way mount propagation is enabled and any mounts completed on the

 host for that volume will be visible only inside of the container. To

 control the mount propagation property of the volume use the

 :[r]shared, :[r]slave or :[r]private propagation flag. The propagation

 property can be specified only for bind mounted volumes and not for in?

 ternal volumes or named volumes. For mount propagation to work on the

 source mount point (the mount point where source dir is mounted on) it

 has to have the right propagation properties. For shared volumes, the

 source mount point has to be shared. And for slave volumes, the source

 mount has to be either shared or slave. [1] ?#Footnote1?

 Use df <source-dir> to determine the source mount and then use findmnt

 -o TARGET,PROPAGATION <source-mount-dir> to determine propagation prop? Page 25/31

 erties of source mount, if findmnt utility is not available, the source

 mount point can be determined by looking at the mount entry in

 /proc/self/mountinfo. Look at optional fields and see if any propaga?

 tion properties are specified. shared:X means the mount is shared,

 master:X means the mount is slave and if nothing is there that means

 the mount is private. [1] ?#Footnote1?

 To change propagation properties of a mount point use the mount com?

 mand. For example, to bind mount the source directory /foo do mount

 --bind /foo /foo and mount --make-private --make-shared /foo. This will

 convert /foo into a shared mount point. The propagation properties of

 the source mount can be changed directly. For instance if / is the

 source mount for /foo, then use mount --make-shared / to convert / into

 a shared mount.

BUILD TIME VARIABLES

 The ENV instruction in a Containerfile can be used to define variable

 values. When the image is built, the values will persist in the con?

 tainer image. At times it is more convenient to change the values in

 the Containerfile via a command-line option rather than changing the

 values within the Containerfile itself.

 The following variables can be used in conjunction with the --build-arg

 option to override the corresponding values set in the Containerfile

 using the ENV instruction.

 ? HTTP_PROXY

 ? HTTPS_PROXY

 ? FTP_PROXY

 ? NO_PROXY

 Please refer to the Using Build Time Variables ?#using-build-time-vari?

 ables? section of the Examples.

EXAMPLE

 Build an image using local Containerfiles

 buildah build .

 buildah build -f Containerfile .

 cat ~/Containerfile | buildah build -f - . Page 26/31

 buildah build -f Containerfile.simple -f Containerfile.notsosimple .

 buildah build --timestamp=$(date '+%s') -t imageName .

 buildah build -t imageName .

 buildah build --tls-verify=true -t imageName -f Containerfile.simple .

 buildah build --tls-verify=false -t imageName .

 buildah build --runtime-flag log-format=json .

 buildah build -f Containerfile --runtime-flag debug .

 buildah build --authfile /tmp/auths/myauths.json --cert-dir ~/auth

 --tls-verify=true --creds=username:password -t imageName -f Container?

 file.simple .

 buildah build --memory 40m --cpu-period 10000 --cpu-quota 50000

 --ulimit nofile=1024:1028 -t imageName .

 buildah build --security-opt label=level:s0:c100,c200 --cgroup-parent

 /path/to/cgroup/parent -t imageName .

 buildah build --arch=arm --variant v7 -t imageName .

 buildah build --volume /home/test:/myvol:ro,Z -t imageName .

 buildah build -v /home/test:/myvol:z,U -t imageName .

 buildah build -v /var/lib/dnf:/var/lib/dnf:O -t imageName .

 buildah build --layers -t imageName .

 buildah build --no-cache -t imageName .

 buildah build -f Containerfile --layers --force-rm -t imageName .

 buildah build --no-cache --rm=false -t imageName .

 buildah build --dns-search=example.com --dns=223.5.5.5 --dns-op?

 tion=use-vc .

 buildah build -f Containerfile.in --cpp-flag="-DDEBUG" -t imageName .

 buildah build --network mynet .

 buildah build --env LANG=en_US.UTF-8 -t imageName .

 buildah build --env EDITOR -t imageName .

 buildah build --unsetenv LANG -t imageName .

 buildah build --os-version 10.0.19042.1645 -t imageName .

 buildah build --os-feature win32k -t imageName .

 buildah build --os-feature win32k- -t imageName .

 Building an multi-architecture image using the --manifest option (requires Page 27/31

 emulation software)

 buildah build --arch arm --manifest myimage /tmp/mysrc

 buildah build --arch amd64 --manifest myimage /tmp/mysrc

 buildah build --arch s390x --manifest myimage /tmp/mysrc

 buildah bud --platform linux/s390x,linux/ppc64le,linux/amd64 --manifest

 myimage /tmp/mysrc

 buildah bud --platform linux/arm64 --platform linux/amd64 --manifest

 myimage /tmp/mysrc

 buildah bud --all-platforms --manifest myimage /tmp/mysrc

 Building an image using (--output) custom build output

 buildah build -o out .

 buildah build --output type=local,dest=out .

 buildah build --output type=tar,dest=out.tar .

 buildah build -o - . > out.tar

 Building an image using a URL

 This will clone the specified GitHub repository from the URL and use it

 as context. The Containerfile or Dockerfile at the root of the reposi?

 tory is used as the context of the build. This only works if the GitHub

 repository is a dedicated repository.

 buildah build https://github.com/scollier/purpletest

 Note: Github does not support using git:// for performing clone opera?

 tion due to recent changes in their security guidance

 (https://github.blog/2021-09-01-improving-git-protocol-security-

 github/). Use an https:// URL if the source repository is hosted on

 Github.

 Building an image using a URL to a tarball'ed context

 Buildah will fetch the tarball archive, decompress it and use its con?

 tents as the build context. The Containerfile or Dockerfile at the

 root of the archive and the rest of the archive will get used as the

 context of the build. If you pass an -f PATH/Containerfile option as

 well, the system will look for that file inside the contents of the

 tarball.

 buildah build -f dev/Containerfile https://10.10.10.1/buildah/con? Page 28/31

 text.tar.gz

 Note: supported compression formats are 'xz', 'bzip2', 'gzip' and

 'identity' (no compression).

 Using Build Time Variables

 Replace the value set for the HTTP_PROXY environment variable within the

 Containerfile.

 buildah build --build-arg=HTTP_PROXY="http://127.0.0.1:8321"

ENVIRONMENT

 BUILD_REGISTRY_SOURCES

 BUILD_REGISTRY_SOURCES, if set, is treated as a JSON object which con?

 tains lists of registry names under the keys insecureRegistries,

 blockedRegistries, and allowedRegistries.

 When pulling an image from a registry, if the name of the registry

 matches any of the items in the blockedRegistries list, the image pull

 attempt is denied. If there are registries in the allowedRegistries

 list, and the registry's name is not in the list, the pull attempt is

 denied.

 TMPDIR The TMPDIR environment variable allows the user to specify where

 temporary files are stored while pulling and pushing images. Defaults

 to '/var/tmp'.

Files

 .containerignore/.dockerignore

 If the .containerignore/.dockerignore file exists in the context direc?

 tory, buildah build reads its contents. If both exist, then .container?

 ignore is used. Use the --ignorefile flag to override the ignore file

 path location. Buildah uses the content to exclude files and directo?

 ries from the context directory, when executing COPY and ADD directives

 in the Containerfile/Dockerfile

 Users can specify a series of Unix shell globals in a

 Buildah supports a special wildcard string ** which matches any number

 of directories (including zero). For example, */.go will exclude all

 files that end with .go that are found in all directories.

 Example .containerignore file: Page 29/31

 # exclude this content for image

 /.c

 **/output*

 src

 /.c Excludes files and directories whose names end with .c in any top

 level subdirectory. For example, the source file include/rootless.c.

 **/output* Excludes files and directories starting with output from any

 directory.

 src Excludes files named src and the directory src as well as any con?

 tent in it.

 Lines starting with ! (exclamation mark) can be used to make exceptions

 to exclusions. The following is an example .containerignore/.dockerig?

 nore file that uses this mechanism:

 *.doc

 !Help.doc

 Exclude all doc files except Help.doc from the image.

 This functionality is compatible with the handling of .containerignore

 files described here:

 https://github.com/containers/buildah/blob/main/docs/containerig?

 nore.5.md

 registries.conf (/etc/containers/registries.conf)

 registries.conf is the configuration file which specifies which con?

 tainer registries should be consulted when completing image names which

 do not include a registry or domain portion.

 policy.json (/etc/containers/policy.json)

 Signature policy file. This defines the trust policy for container im?

 ages. Controls which container registries can be used for image, and

 whether or not the tool should trust the images.

SEE ALSO

 buildah(1), cpp(1), buildah-login(1), docker-login(1), namespaces(7),

 pid_namespaces(7), containers-policy.json(5), containers-reg?

 istries.conf(5), user_namespaces(7), crun(1), runc(8)

FOOTNOTES Page 30/31

 1: The Buildah project is committed to inclusivity, a core value of

 open source. The master and slave mount propagation terminology used

 here is problematic and divisive, and should be changed. However, these

 terms are currently used within the Linux kernel and must be used as-is

 at this time. When the kernel maintainers rectify this usage, Buildah

 will follow suit immediately.

buildah April 2017 buildah-build(1)

Page 31/31

