
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'axfer-transfer.1' command

$ man axfer-transfer.1

AXFER-TRANSFER(1) General Commands Manual AXFER-TRANSFER(1)

NAME

 axfer-transfer - transferrer of audio data frame for sound devices and

 nodes.

SYNOPSIS

 axfer transfer direction [common-options] [backend-options] [

 filepath]

 axfer transfer direction [common-options] [backend-options] -I |

 --separate-channels filepath ...

 direction = capture | playback

 common-options = (read OPTIONS section)

 backend-options = (read OPTIONS section)

 filepaths = (read OPTIONS section)

DESCRIPTION

 The transfer subcommand of axfer performs transmission of audio data

 frames for devices available in supported backends. This program is es?

 sentially designed to use alsa-lib APIs (libasound backend) to handle

 sound devices supported by Linux sound subsystem (ALSA).

OPTIONS

 Direction

 capture

 Operates for capture transmission.

 playback Page 1/18

 Operates for playback transmission.

 Filepath

 Filepath is handled as a path relative to current working directory of

 run time if it's not full path from root directory.

 The standard input or output is used if filepath is not specified or

 given as '-' .

 For playback transmission, container format of given filepath is de?

 tected automatically and metadata is used for parameters of sample for?

 mat, channels, rate, duration. If nothing detected, content of given

 file path is handled as raw data. In this case, the parameters should

 be indicated as options.

 Multiple filepaths are allowed with -I | --separate-channels option. In

 this case, standard input and output is not available. The same

 filepath is not allowed except for paths listed below:

 - /dev/null

 - /dev/zero

 - /dev/full

 - /dev/random

 - /dev/urandom

 Common options

 -h, --help

 Print help messages and finish run time.

 -q, --quiet

 Quiet mode. Suppress messages (not sound :))

 -v, --verbose

 Verbose mode. Runtime dumps supplemental information according

 to the number of this option given in command line.

 -d, --duration=#

 Interrupt after # seconds. A value of zero means infinity. The

 default is zero, so if this option is omitted then the transmis?

 sion process will run until it is killed. Either -d or -s option

 is available exclusively.

 -s, --samples=# Page 2/18

 Interrupt after transmission of # number of data frames. A value

 of zero means infinity. The default is zero, so if this options

 is omitted then the transmission process will run until it is

 killed. Either -d or -s option is available exclusively.

 -f, --format=FORMAT

 Indicate format of audio sample. This is required for capture

 transmission, or playback transmission with files including raw

 audio data.

 Available sample format is listed below:

 - [S8|U8|S16|U16|S32|U32][_LE|_BE]

 - [S24|U24][_LE|_BE]

 - FLOAT[_LE|_BE]

 - FLOAT64[_LE|_BE]

 - IEC958_SUBFRAME[_LE|_BE]

 - MU_LAW

 - A_LAW

 - [S20|U20][_LE|_BE]

 - [S24|U24][_3LE|_3BE]

 - [S20|U20][_3LE|_3BE]

 - [S18|U18][_3LE|_3BE]

 - DSD_U8

 - DSD_[U16|U32][_LE|_BE]

 If endian-ness is omitted, host endian-ness is used.

 Some special formats are available:

 - cd (16 bit little endian, 44100, stereo) [= -f S16_LE -c 2 -r

 44100]

 - cdr (16 bit big endian, 44100, stereo) [= -f S16_BE -c 2 -f

 44100]

 - dat (16 bit little endian, 48000, stereo) [= -f S16_LE -c 2

 -r 48000]

 If omitted, U8 is used as a default. Actual available formats

 are restricted by each transmission backend.

 Unavailable sample format is listed below. These format has size Page 3/18

 of data frame unaligned to byte unit.

 - IMA_ADPCM

 - MPEG

 - GSM

 - SPECIAL

 - G723_24

 - G723_24_1B

 - G723_40

 - G723_40_1B

 -c, --channels=#

 Indicate the number of audio data samples per frame. This is re?

 quired for capture transmission, or playback transmission with

 files including raw audio data. The value should be between 1 to

 256 . If omitted, 1 is used as a default.

 -r, --rate=#

 Indicate the number of audio data frame per second. This is re?

 quired for capture transmission, or playback transmission with

 files including raw audio data. If the value is less than 1000 ,

 it's interpreted by kHz unit. The value should be between 2000

 and 192000 . If omitted, 8000 is used as a default.

 -t, --file-type=TYPE

 Indicate the type of file. This is required for capture trans?

 mission. Available types are listed below:

 - wav: Microsoft/IBM RIFF/Wave format

 - au, sparc: Sparc AU format

 - voc: Creative Tech. voice format

 - raw: raw data

 When nothing is indicated, for capture transmission, the type is

 decided according to suffix of filepath , and raw type is used

 for fallback.

 -I, --separate-channels

 Indicate this option when several files are going to be handled.

 For capture transmission, if one filepath is given as filepath , Page 4/18

 a list of filepaths is generated in a formula '<filepath>-<se?

 quential number>[.suffix]'. The suffix is omitted when raw for?

 mat of container is used.

 --dump-hw-params

 Dump hardware parameters and finish run time if backend supports

 it.

 --xfer-backend=BACKEND

 Select backend of transmission from a list below. The default is

 libasound.

 - libasound

 - libffado (optional if compiled)

 Backend options for libasound

 -D, --device=NODE

 This option is used to select PCM node in libasound configura?

 tion space. Available nodes are listed by pcm operation of list

 subcommand.

 -N, --nonblock

 With this option, PCM substream is opened in non-blocking mode.

 When audio data frame is not available in buffer of the PCM sub?

 stream, I/O operation immediately returns without blocking

 process. This option implicitly uses --waiter-type option as

 well to prevent heavy consumption of CPU time.

 -M, --mmap

 With this option, audio data frame is processed directly in buf?

 fer of PCM substream if selected node supports this operation.

 Without the option, temporary buffers are used to copy audio

 data frame for buffer of PCM substream. This option implicitly

 uses --waiter-type option as well to prevent heavy consumption

 of CPU time.

 -F, --period-size=#

 This option configures given value to period_size hardware pa?

 rameter of PCM substream. The parameter indicates the number of

 audio data frame per period in buffer of the PCM substream. Ac? Page 5/18

 tual number is decided as a result of interaction between each

 implementation of PCM plugin chained from the selected PCM node,

 and in-kernel driver or PCM I/O plugins.

 Ideally, the same amount of audio data frame as the value should

 be handled in one I/O operation. Actually, it is not, depending

 on implementation of the PCM plugins, in-kernel driver, PCM I/O

 plugins and scheduling model. For 'hw' PCM plugin in 'irq'

 scheduling model, the value is used to decide intervals of hard?

 ware interrupt, thus the same amount of audio data frame as the

 value is expected to be available for one I/O operation.

 --period-time=#

 This option configures given value to period_time hardware pa?

 rameter of PCM substream. This option is similar to --pe?

 riod-size option, however its unit is micro-second.

 -B, --buffer-size=#

 This option configures given value to buffer_size hardware pa?

 rameter of PCM substream. The parameter indicates the number of

 audio data frame in buffer of PCM substream. Actual number is

 decided as a result of interaction between each implementation

 of PCM plugin chained from the selected PCM node, and in-kernel

 driver or PCM I/O plugins.

 Ideally, this is multiples of the number of audio data frame per

 period, thus the size of period. Actually, it is not, depending

 on implementation of the PCM plugins, in-kernel driver and PCM

 I/O plugins.

 --buffer-time=#

 This option configures given value to buffer_time hardware pa?

 rameter of PCM substream. This option is similar to --buf?

 fer-size option, however its unit is micro-second.

 --waiter-type=TYPE

 This option indicates the type of waiter for event notification.

 At present, four types are available; default , select , poll

 and epoll . With default type, 'snd_pcm_wait()' is used. With Page 6/18

 select type, 'select(2)' system call is used. With poll type,

 'poll(2)' system call is used. With epoll type, Linux-specific

 'epoll(7)' system call is used.

 This option should correspond to one of --nonblock or --mmap op?

 tions, or timer value of --sched-model option. Neither this op?

 tion nor --test-nowait is available at the same time.

 --sched-model=MODEL

 This option selects scheduling model for process of this pro?

 gram. One of irq or timer is available. In detail, please read

 'SCHEDULING MODEL' section.

 When nothing specified, irq model is used.

 -A, --avail-min=#

 This option configures given value to avail-min software parame?

 ter of PCM substream. In blocking mode, the value is used as

 threshold of the number of available audio data frames in buffer

 of PCM substream to wake up process blocked by I/O operation. In

 non-blocking mode, any I/O operation returns -EAGAIN until the

 available number of audio data frame reaches the threshold.

 This option has an effect in cases neither --mmap nor timer

 value of --sched-model option is used.

 -R, --start-delay=#

 This option configures given value to start_threshold software

 parameter of PCM substream. The value is used as threshold to

 start PCM substream automatically. At present, this option has

 an effect in cases neither --mmap nor timer value of

 --sched-model option is used.

 For playback transmission, when the number of accumulated audio

 data frame in buffer of PCM substream to which this program

 writes out reaches the threshold, the PCM substream starts auto?

 matically without an explicit call of snd_pcm_start() to the PCM

 substream.

 For capture transmission, this option is useless. The number of

 accumulated audio data frame is not increased without an ex? Page 7/18

 plicit call of snd_pcm_start() to the PCM substream.

 This option has an effect in cases neither --mmap nor timer

 value of --sched-model option is used.

 -T, --stop-delay=#

 This option configures given value to stop_threshold software

 parameter of PCM substream. The value is used as threshold to

 stop PCM substream automatically. At present, this option has an

 effect in cases neither --mmap nor timer value of --sched-model

 option is used.

 For capture transmission, when the number of accumulated audio

 data frame in buffer of PCM substream to which a driver or

 alsa-lib PCM plugins write reaches the threshold, the PCM sub?

 stream stops automatically without an explicit call of

 snd_pcm_stop() to the PCM substream. This is a case that this

 program leaves the audio data frames without reading for a

 while.

 For playback transmission, when the number available audio data

 frame in buffer of PCM substream from which a driver or alsa-lib

 PCM plugins read reaches the threshold, the PCM substream stops

 automatically without an explicit call of snd_pcm_stop() to the

 PCM substream. This is a case that this program leaves the audio

 data frames without writing for a while.

 This option has an effect in cases neither --mmap nor timer

 value of --sched-model option is used.

 --disable-resample

 This option has an effect for 'plug' plugin in alsa-lib to sup?

 press conversion of sampling rate for audio data frame.

 --disable-channels

 This option has an effect for 'plug' plugin in alsa-lib to sup?

 press conversion of channels for audio data frame.

 --disable-format

 This option has an effect for 'plug' plugin in alsa-lib to sup?

 press conversion of sample format for audio data frame. Page 8/18

 --disable-softvol

 This option has an effect for 'softvol' plugin in alsa-lib to

 suppress conversion of samples for audio data frame via addi?

 tional control element.

 --fatal-errors

 This option suppresses recovery operation from XRUN state of

 running PCM substream, then process of this program is going to

 finish as usual.

 --test-nowait

 This option disables any waiter for I/O event notification. I/O

 operations are iterated till any of audio data frame is avail?

 able. The option brings heavy load in consumption of CPU time.

 Backend options for libffado

 This backend is automatically available when configure script detects

 ffado_streaming_init() symbol in libffado shared object.

 -p, --port=#

 This option uses given value to decide which 1394 OHCI con?

 troller is used to communicate. When Linux system has two 1394

 OHCI controllers, 0 or 1 are available. Neither this option nor

 -g is available at the same time. If nothing specified, libffado

 performs to communicate to units on IEEE 1394 bus managed by all

 of 1394 OHCI controller available in Linux system.

 -n, --node=#

 This option uses given value to decide which unit is used to

 communicate. This option requires -p option to indicate which

 1394 OHCI controller is used to communicate to the specified

 unit.

 -g, --guid=HEXADECIMAL

 This option uses given value to decide a target unit to communi?

 cate. The value should be prefixed with '0x' and consists of

 hexadecimal literal letters (0-9, a-f, A-F). Neither this option

 nor -p is available at the same time. If nothing specified,

 libffado performs to communicate to units on IEEE 1394 bus man? Page 9/18

 aged by all of 1394 OHCI controller available in Linux system.

 --frames-per-period=#

 This option uses given value to decide the number of audio data

 frame in one read/write operation. The operation is blocked till

 the number of available audio data frame exceeds the given

 value. As a default, 512 audio data frames is used.

 --periods-per-buffer=#

 This option uses given value to decide the size of intermediate

 buffer between this program and libffado. As a default, 2 peri?

 ods per buffer is used.

 --slave

 This option allows this program to run slave mode. In this mode,

 libffado adds unit directory into configuration ROM of 1394 OHCI

 controller where Linux system runs. The unit directory can be

 found by the other node on the same bus. Linux system running

 on the node can transfer isochronous packet with audio data

 frame to the unit. This program can receive the packet and de?

 multiplex the audio data frame.

 --snoop

 This option allows this program to run snoop mode. In this mode,

 libffado listens isochronous channels to which device transfers

 isochronous packet. When isochronous communication starts by any

 unit on the same bus, the packets can be handled by this pro?

 gram.

 --sched-priority=#

 This option executes pthread_setschedparam() in a call of

 ffado_streaming_init() to configure scheduling policy and given

 value as its priority for threads related to isochronous commu?

 nication. The given value should be within RLIMIT_RTPRIO param?

 eter of process. Please read getrlimit(2) for details.

POSIX SIGNALS

 During transmission, SIGINT and SIGTERM will close handled files and

 PCM substream to be going to finish run time. Page 10/18

 SIGTSTP will suspend PCM substream and SIGCONT will resume it. No XRUNs

 are expected. With libffado backend, the suspend/resume is not sup?

 ported and runtime is aboeted immediately.

 The other signals perform default behaviours.

EXAMPLES

 $ axfer transfer playback -d 1 something

 The above will transfer audio data frame in 'something' file for play?

 back during 1 second. The sample format is detected automatically as a

 result to parse 'something' as long as it's compliant to one of Micro?

 soft/IBM RIFF/Wave, Sparc AU, Creative Tech. voice formats. If nothing

 detected, -r , -c and -f should be given, or -f should be given with

 special format.

 $ axfer transfer playback -r 22050 -c 1 -f S16_LE -t raw something

 The above will transfer audio data frame in 'something' file including

 no information of sample format, as sample format of 22050 Hz, monau?

 ral, signed 16 bit little endian PCM for playback. The transmission

 continues till catching SIGINT from keyboard or SIGTERM by kill(1) .

 $ axfer transfer capture -d 10 -f cd something.wav

 The above will transfer audio data frame to 'something.wav' file as

 sample format of 44.1 kHz, 2 channels, signed 16 bit little endian PCM,

 during 10 seconds. The file format is Microsoft/IBM RIFF/Wave according

 to suffix of the given filepath .

 $ axfer transfer capture -s 1024 -r 48000 -c 2 -f S32_BE -I -t au channels

 The above will transfer audio data frame as sample format of 48.0 kHz,

 2 channels, signed 32 bit big endian PCM for 1,024 number of data

 frames to files named 'channels-1.au' and 'channels-2.au'.

SCHEDULING MODEL

 In a design of ALSA PCM core, runtime of PCM substream supports two

 modes; period-wakeup and no-period-wakeup. These two modes are for

 different scheduling models.

 IRQ-based scheduling model

 As a default, period-wakeup mode is used. In this mode, in-kernel driv?

 ers should operate hardware to generate periodical notification for Page 11/18

 transmission of audio data frame. The interval of notification is

 equivalent to the same amount of audio data frame as one period of buf?

 fer, against actual time.

 In a handler assigned to the notification, a helper function of ALSA

 PCM core is called to update a position to head of hardware transmis?

 sion, then compare it with a position to head of application operation

 to judge overrun/underrun (XRUN) and to wake up blocked processes.

 For this purpose, hardware IRQ of controller for serial audio bus such

 as Inter-IC sound is typically used. In this case, the controller gen?

 erates the IRQ according to transmission on the serial audio bus. In

 the handler assigned to the IRQ, direct media access (DMA) transmission

 is requested between dedicated host memory and device memory.

 If target hardware doesn't support this kind of mechanism, the periodi?

 cal notification should be emulated by any timer; e.g. hrtimer, kernel

 timer. External PCM plugins generated by PCM plugin SDK in alsa-lib

 should also emulate the above behaviour.

 In this mode, PCM applications are programmed according to typical way

 of I/O operations. They execute blocking system calls to read/write au?

 dio data frame in buffer of PCM substream, or blocking system calls to

 wait until any audio data frame is available. In axfer , this is called

 IRQ-based scheduling model and a default behaviour. Users can explic?

 itly configure this mode by usage of --sched-model option with irq

 value.

 Timer-based scheduling model

 The no-period-wakeup mode is an optional mode of runtime of PCM sub?

 stream. The mode assumes a specific feature of hardware and assist of

 in-kernel driver and PCM applications. In this mode, in-kernel drivers

 don't operate hardware to generate periodical notification for trans?

 mission of audio data frame. The hardware should automatically con?

 tinue transmission of audio data frame without periodical operation of

 the drivers; e.g. according to auto-triggered DMA transmission, a chain

 of registered descriptors.

 In this mode, nothing wakes up blocked processes, therefore PCM appli? Page 12/18

 cations should be programmed without any blocking operation. For this

 reason, this mode is enabled when the PCM applications explicitly con?

 figure hardware parameter to runtime of PCM substream, to prevent dis?

 order of existing applications. Additionally, nothing maintains timing

 for transmission of audio data frame, therefore the PCM applications

 should voluntarily handle any timer to queue audio data frame in buffer

 of the PCM substream for lapse of time. Furthermore, instead of driver,

 the PCM application should call a helper function of ALSA PCM core to

 update a position to head of hardware transmission and to check XRUN.

 In axfer , this is called timer-based scheduling model and available as

 long as hardware/driver assists no-period-wakeup runtime. Users should

 explicitly set this mode by usage of --sched-model option with timer

 value.

 In the scheduling model, PCM applications need to care of available

 space on PCM buffer by lapse of time, typically by yielding CPU and

 wait for rescheduling. For the yielding, timeout is calculated for

 preferable amount of PCM frames to process. This is convenient to a

 kind of applications, like sound servers. when an I/O thread of the

 server wait for the timeout, the other threads can process audio data

 frames for server clients. Furthermore, with usage of rewinding/for?

 warding, applications can achieve low latency between transmission po?

 sition and handling position even if they uses large size of PCM buf?

 fers.

 Advantages and issues

 Ideally, timer-based scheduling model has some advantages than

 IRQ-based scheduling model. At first, no interrupt context runs for PCM

 substream. The PCM substream is handled in any process context only. No

 need to care of race conditions between IRQ and process contexts. This

 reduces some concerns for some developers of drivers and applications.

 Secondary, CPU time is not used for handlers on the interrupt context.

 The CPU time can be dedicated for the other tasks. This is good in a

 point of Time Sharing System. Thirdly, hardware is not configured to

 generate interrupts. This is good in a point of reduction of overall Page 13/18

 power consumption possibly.

 In either scheduling model, the hardware should allow drivers to read

 the number of audio data frame transferred between the dedicated memory

 and the device memory for audio serial bus. However, in timer-based

 scheduling model, fine granularity and accuracy of the value is impor?

 tant. Actually hardware performs transmission between dedicated memory

 and device memory for a small batch of audio data frames or bytes. In a

 view of PCM applications, the granularity in current transmission is

 required to decide correct timeout for each I/O operation. As of Linux

 kernel v4.21, ALSA PCM interface between kernel/userspace has no fea?

 ture to report it.

COMPATIBILITY TO APLAY

 The transfer subcommand of axfer is designed to keep compatibility to

 aplay(1). However some options below are not compatible due to several

 technical reasons.

 -I, --separate-channels

 This option is supported just for files to store audio data

 frames corresponding to each channel. In aplay(1) implementa?

 tion, this option has an additional effect to use PCM buffer

 aligned to non-interleaved order if a target device supports. As

 of 2018, PCM buffer of non-interleaved order is hardly used by

 sound devices.

 -A, --avail-min=#

 This option indicates threshold to wake up blocked process in a

 unit of audio data frame. Against aplay(1) implementation, this

 option has no effect with --mmap option as well as timer of

 --sched-model option.

 -R, --start-delay=#

 This option indicates threshold to start prepared PCM substream

 in a unit of audio data frame. Against aplay(1) implementation,

 this option has no effect with --mmap option as well as timer of

 --sched-model option.

 -T, --stop-delay=# Page 14/18

 This option indicates threshold to stop running PCM substream in

 a unit of audio data frame. Against aplay(1) implementation,

 this option has no effect with --mmap option as well as timer of

 --sched-model option.

 --max-file-time=#

 This option is unsupported. In aplay(1) implementation, the op?

 tion has an effect for capture transmission to save files up to

 the same number of data frames as the given value by second

 unit, or the maximum number of data frames supported by used

 file format. When reaching to the limitation, used file is

 closed, then new file is opened and audio data frames are writ?

 ten. However, this option requires extra handling of files and

 shall increase complexity of main loop of axfer.

 --use-strftime=FORMAT

 This option is unsupported. In aplay(1) implementation, the op?

 tion has an effect for capture transmission to generate file

 paths according to given format in which some extra formats are

 available as well as formats supported by strftime(3). However,

 this option requires extra string processing for file paths and

 it's bothersome if written in C language.

 --process-id-file=FILEPATH

 This option is unsupported. In aplay(1) implementation, the op?

 tion has an effect to create a file for given value and write

 out process ID to it. This file allows users to get process ID

 and send any POSIX signal to aplay process. However, this idea

 has some troubles for file locking when multiple aplay processes

 run with the same file.

 -V, --vumeter=TYPE

 This option is not supported at present. In aplay(1) implementa?

 tion, this option has an effect to occupy stdout with some ter?

 minal control characters and display vumeter for monaural and

 stereo channels. However, some problems lay; this feature is

 just for audio data frames with PCM format, this feature brings Page 15/18

 disorder of terminal after aborting, stdout is not available for

 pipeline.

 -i, --interactive

 This option is not supported at present. In aplay(1) implementa?

 tion, this option has an effect to occupy stdin for key input

 and suspend/resume PCM substream according to pushed enter key.

 However, this feature requires an additional input handling in

 main loop and leave bothersome operation to maintain PCM sub?

 stream.

 -m, --chmap=CH1,CH2,...

 ALSA PCM core and control core doesn't support this feature,

 therefore remapping should be done in userspace. This brings

 overhead to align audio data frames, especially for mmap opera?

 tion. Furthermore, as of alsa-lib v1.1.8, some plugins don't

 support this feature expectedly, thus this option is a lack of

 transparent operation. At present, this option is not supported

 yet not to confuse users.

 SIGTSTP, SIGCONT

 This performs suspend/resume of PCM substream. In aplay(1) im?

 plementation, these operations bring XRUN state to the sub?

 stream, and suspend/resume is done in interactive mode in the

 above. Some developers use the signal for recovery test from

 XRUN. At present, no alternative is supported for the test.

 SIGUSR1

 This is not supported. In aplay(1) implementation, this signal

 is assigned to a handler to close a current file to store audio

 data frame and open a new file to continue processing. However,

 as well as --max-file-time option, this option should increase

 complexity of main loop of axfer.

DESIGN

 Modular structure

 This program consists of three modules; xfer , mapper and container .

 Each module has an abstraction layer to enable actual implementation. Page 16/18

 -------- ---------- -------------

 device <-> | xfer | <-> | mapper | <-> | container | <-> file

 -------- ---------- -------------

 libasound single wav

 libffado multiple au

 voc

 raw

 The xfer module performs actual transmission to devices and nodes. The

 module can have several transmission backends. As a default backend,

 libasound backend is used to perform transmission via alsa-lib APIs.

 The module allows each backend to parse own command line options.

 The container module performs to read/write audio data frame via de?

 scriptor for file/stream of multimedia container or raw data. The mod?

 ule automatically detect type of multimedia container and parse parame?

 ters in its metadata of data header. At present, three types of multi?

 media containers are supported; Microsoft/IBM RIFF/Wave (wav), Sparc

 AU (au) and Creative Technology voice (voc). Additionally, a spe?

 cial container is prepared for raw audio data (raw).

 The mapper module handles buffer layout and alignment for transmission

 of audio data frame. The module has two implementations; single and

 multiple . The single backend uses one container to construct the buf?

 fer. The multiple backend uses several containers to construct it.

 Care of copying audio data frame

 Between the xfer module and mapper module, a pointer to buffer includ?

 ing audio data frames is passed. This buffer has two shapes for inter?

 leaved and non-interleaved order. For the former, the pointer points to

 one buffer. For the latter, the pointer points to an array in which

 each element points to one buffer. Between the mapper module and con?

 tainer module, a pointer to one buffer is passed because supported me?

 dia containers including raw type store audio data frames in inter?

 leaved order.

 In passing audio data frame between the modules, axfer is programmed to

 avoid copying between a buffer to another buffer as much as possible. Page 17/18

 For example, in some scenarios below, no copying occurs between mod?

 ules.

 - xfer(mmap/interleaved), mapper(single), container(any)

 - xfer(mmap/non-interleaved), mapper(multiple), containers(any)

 Unit test

 For each of the mapper and container module, unit test is available. To

 run the tests, execute below command:

 $ make test

 Each test iterates writing to file and reading to the file for many

 times and it takes long time to finish. Please take care of the execu?

 tion time if running on any CI environment.

SEE ALSO

 axfer(1), axfer-list(1), alsamixer(1), amixer(1)

AUTHOR

 Takashi Sakamoto <o-takashi@sakamocchi.jp>

alsa-utils 28 November 2018 AXFER-TRANSFER(1)

Page 18/18

