
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'arm_fadvise.2' command

$ man arm_fadvise.2

POSIX_FADVISE(2) Linux Programmer's Manual POSIX_FADVISE(2)

NAME

 posix_fadvise - predeclare an access pattern for file data

SYNOPSIS

 #include <fcntl.h>

 int posix_fadvise(int fd, off_t offset, off_t len, int advice);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 posix_fadvise():

 _POSIX_C_SOURCE >= 200112L

DESCRIPTION

 Programs can use posix_fadvise() to announce an intention to access

 file data in a specific pattern in the future, thus allowing the kernel

 to perform appropriate optimizations.

 The advice applies to a (not necessarily existent) region starting at

 offset and extending for len bytes (or until the end of the file if len

 is 0) within the file referred to by fd. The advice is not binding; it

 merely constitutes an expectation on behalf of the application.

 Permissible values for advice include:

 POSIX_FADV_NORMAL

 Indicates that the application has no advice to give about its

 access pattern for the specified data. If no advice is given

 for an open file, this is the default assumption.

 POSIX_FADV_SEQUENTIAL Page 1/4

 The application expects to access the specified data sequen?

 tially (with lower offsets read before higher ones).

 POSIX_FADV_RANDOM

 The specified data will be accessed in random order.

 POSIX_FADV_NOREUSE

 The specified data will be accessed only once.

 In kernels before 2.6.18, POSIX_FADV_NOREUSE had the same seman?

 tics as POSIX_FADV_WILLNEED. This was probably a bug; since

 kernel 2.6.18, this flag is a no-op.

 POSIX_FADV_WILLNEED

 The specified data will be accessed in the near future.

 POSIX_FADV_WILLNEED initiates a nonblocking read of the speci?

 fied region into the page cache. The amount of data read may be

 decreased by the kernel depending on virtual memory load. (A

 few megabytes will usually be fully satisfied, and more is

 rarely useful.)

 POSIX_FADV_DONTNEED

 The specified data will not be accessed in the near future.

 POSIX_FADV_DONTNEED attempts to free cached pages associated

 with the specified region. This is useful, for example, while

 streaming large files. A program may periodically request the

 kernel to free cached data that has already been used, so that

 more useful cached pages are not discarded instead.

 Requests to discard partial pages are ignored. It is preferable

 to preserve needed data than discard unneeded data. If the ap?

 plication requires that data be considered for discarding, then

 offset and len must be page-aligned.

 The implementation may attempt to write back dirty pages in the

 specified region, but this is not guaranteed. Any unwritten

 dirty pages will not be freed. If the application wishes to en?

 sure that dirty pages will be released, it should call fsync(2)

 or fdatasync(2) first.

RETURN VALUE Page 2/4

 On success, zero is returned. On error, an error number is returned.

ERRORS

 EBADF The fd argument was not a valid file descriptor.

 EINVAL An invalid value was specified for advice.

 ESPIPE The specified file descriptor refers to a pipe or FIFO. (ESPIPE

 is the error specified by POSIX, but before kernel version

 2.6.16, Linux returned EINVAL in this case.)

VERSIONS

 Kernel support first appeared in Linux 2.5.60; the underlying system

 call is called fadvise64(). Library support has been provided since

 glibc version 2.2, via the wrapper function posix_fadvise().

 Since Linux 3.18, support for the underlying system call is optional,

 depending on the setting of the CONFIG_ADVISE_SYSCALLS configuration

 option.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008. Note that the type of the len argument was

 changed from size_t to off_t in POSIX.1-2001 TC1.

NOTES

 Under Linux, POSIX_FADV_NORMAL sets the readahead window to the default

 size for the backing device; POSIX_FADV_SEQUENTIAL doubles this size,

 and POSIX_FADV_RANDOM disables file readahead entirely. These changes

 affect the entire file, not just the specified region (but other open

 file handles to the same file are unaffected).

 The contents of the kernel buffer cache can be cleared via the

 /proc/sys/vm/drop_caches interface described in proc(5).

 One can obtain a snapshot of which pages of a file are resident in the

 buffer cache by opening a file, mapping it with mmap(2), and then ap?

 plying mincore(2) to the mapping.

 C library/kernel differences

 The name of the wrapper function in the C library is posix_fadvise().

 The underlying system call is called fadvise64() (or, on some architec?

 tures, fadvise64_64()); the difference between the two is that the for?

 mer system call assumes that the type of the len argument is size_t, Page 3/4

 while the latter expects loff_t there.

 Architecture-specific variants

 Some architectures require 64-bit arguments to be aligned in a suitable

 pair of registers (see syscall(2) for further detail). On such archi?

 tectures, the call signature of posix_fadvise() shown in the SYNOPSIS

 would force a register to be wasted as padding between the fd and off?

 set arguments. Therefore, these architectures define a version of the

 system call that orders the arguments suitably, but is otherwise ex?

 actly the same as posix_fadvise().

 For example, since Linux 2.6.14, ARM has the following system call:

 long arm_fadvise64_64(int fd, int advice,

 loff_t offset, loff_t len);

 These architecture-specific details are generally hidden from applica?

 tions by the glibc posix_fadvise() wrapper function, which invokes the

 appropriate architecture-specific system call.

BUGS

 In kernels before 2.6.6, if len was specified as 0, then this was in?

 terpreted literally as "zero bytes", rather than as meaning "all bytes

 through to the end of the file".

SEE ALSO

 fincore(1), mincore(2), readahead(2), sync_file_range(2), posix_fallo?

 cate(3), posix_madvise(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 POSIX_FADVISE(2)

Page 4/4

