

Full credit is given to the above companies including the OS that this PDF file was generated!

# Red Hat Enterprise Linux Release 9.2 Manual Pages on 'arch\_prctl.2' command

## \$ man arch\_prctl.2

ARCH\_PRCTL(2)

Linux Programmer's Manual

ARCH\_PRCTL(2)

NAME

arch\_prctl - set architecture-specific thread state

### **SYNOPSIS**

#include <asm/prctl.h>

#include <sys/prctl.h>

int arch\_prctl(int code, unsigned long addr);

int arch\_prctl(int code, unsigned long \*addr);

# **DESCRIPTION**

arch\_prctl() sets architecture-specific process or thread state. code selects a subfunction and passes argument addr to it; addr is inter? preted as either an unsigned long for the "set" operations, or as an unsigned long \*, for the "get" operations.

Subfunctions for both x86 and x86-64 are:

ARCH\_SET\_CPUID (since Linux 4.12)

Enable (addr != 0) or disable (addr == 0) the cpuid instruction for the calling thread. The instruction is enabled by default.

If disabled, any execution of a cpuid instruction will instead generate a SIGSEGV signal. This feature can be used to emulate cpuid results that differ from what the underlying hardware would have produced (e.g., in a paravirtualization setting).

The ARCH\_SET\_CPUID setting is preserved across fork(2) and

clone(2) but reset to the default (i.e., cpuid enabled) on ex?

ecve(2).

ARCH\_GET\_CPUID (since Linux 4.12)

Return the setting of the flag manipulated by ARCH\_SET\_CPUID as the result of the system call (1 for enabled, 0 for disabled). addr is ignored.

Subfunctions for x86-64 only are:

ARCH\_SET\_FS

Set the 64-bit base for the FS register to addr.

ARCH GET FS

Return the 64-bit base value for the FS register of the calling thread in the unsigned long pointed to by addr.

ARCH\_SET\_GS

Set the 64-bit base for the GS register to addr.

ARCH\_GET\_GS

Return the 64-bit base value for the GS register of the calling thread in the unsigned long pointed to by addr.

## **RETURN VALUE**

On success, arch\_prctl() returns 0; on error, -1 is returned, and errno is set to indicate the error.

#### **ERRORS**

EFAULT addr points to an unmapped address or is outside the process ad? dress space.

EINVAL code is not a valid subcommand.

EPERM addr is outside the process address space.

ENODEV ARCH\_SET\_CPUID was requested, but the underlying hardware does not support CPUID faulting.

#### **CONFORMING TO**

arch\_prctl() is a Linux/x86-64 extension and should not be used in pro? grams intended to be portable.

#### **NOTES**

arch\_prctl() is supported only on Linux/x86-64 for 64-bit programs cur? rently.

The 64-bit base changes when a new 32-bit segment selector is loaded.

ARCH\_SET\_GS is disabled in some kernels.

Context switches for 64-bit segment bases are rather expensive. As an optimization, if a 32-bit TLS base address is used, arch\_prctl() may use a real TLS entry as if set\_thread\_area(2) had been called, instead of manipulating the segment base register directly. Memory in the first 2 GB of address space can be allocated by using mmap(2) with the MAP\_32BIT flag.

Because of the aforementioned optimization, using arch\_prctl() and set\_thread\_area(2) in the same thread is dangerous, as they may over? write each other's TLS entries.

As of version 2.7, glibc provides no prototype for arch\_prctl(). You have to declare it yourself for now. This may be fixed in future glibc versions.

FS may be already used by the threading library. Programs that use ARCH\_SET\_FS directly are very likely to crash.

## SEE ALSO

mmap(2), modify\_ldt(2), prctl(2), set\_thread\_area(2)

AMD X86-64 Programmer's manual

### COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 ARCH\_PRCTL(2)