
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'accept.2' command

$ man accept.2

ACCEPT(2) Linux Programmer's Manual ACCEPT(2)

NAME

 accept, accept4 - accept a connection on a socket

SYNOPSIS

 #include <sys/types.h> /* See NOTES */

 #include <sys/socket.h>

 int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sys/socket.h>

 int accept4(int sockfd, struct sockaddr *addr,

 socklen_t *addrlen, int flags);

DESCRIPTION

 The accept() system call is used with connection-based socket types

 (SOCK_STREAM, SOCK_SEQPACKET). It extracts the first connection re?

 quest on the queue of pending connections for the listening socket,

 sockfd, creates a new connected socket, and returns a new file descrip?

 tor referring to that socket. The newly created socket is not in the

 listening state. The original socket sockfd is unaffected by this

 call.

 The argument sockfd is a socket that has been created with socket(2),

 bound to a local address with bind(2), and is listening for connections

 after a listen(2).

 The argument addr is a pointer to a sockaddr structure. This structure Page 1/5

 is filled in with the address of the peer socket, as known to the com?

 munications layer. The exact format of the address returned addr is

 determined by the socket's address family (see socket(2) and the re?

 spective protocol man pages). When addr is NULL, nothing is filled in;

 in this case, addrlen is not used, and should also be NULL.

 The addrlen argument is a value-result argument: the caller must ini?

 tialize it to contain the size (in bytes) of the structure pointed to

 by addr; on return it will contain the actual size of the peer address.

 The returned address is truncated if the buffer provided is too small;

 in this case, addrlen will return a value greater than was supplied to

 the call.

 If no pending connections are present on the queue, and the socket is

 not marked as nonblocking, accept() blocks the caller until a connec?

 tion is present. If the socket is marked nonblocking and no pending

 connections are present on the queue, accept() fails with the error EA?

 GAIN or EWOULDBLOCK.

 In order to be notified of incoming connections on a socket, you can

 use select(2), poll(2), or epoll(7). A readable event will be deliv?

 ered when a new connection is attempted and you may then call accept()

 to get a socket for that connection. Alternatively, you can set the

 socket to deliver SIGIO when activity occurs on a socket; see socket(7)

 for details.

 If flags is 0, then accept4() is the same as accept(). The following

 values can be bitwise ORed in flags to obtain different behavior:

 SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the open file

 description (see open(2)) referred to by the new file

 descriptor. Using this flag saves extra calls to fc?

 ntl(2) to achieve the same result.

 SOCK_CLOEXEC Set the close-on-exec (FD_CLOEXEC) flag on the new file

 descriptor. See the description of the O_CLOEXEC flag

 in open(2) for reasons why this may be useful.

RETURN VALUE

 On success, these system calls return a file descriptor for the ac? Page 2/5

 cepted socket (a nonnegative integer). On error, -1 is returned, errno

 is set appropriately, and addrlen is left unchanged.

 Error handling

 Linux accept() (and accept4()) passes already-pending network errors on

 the new socket as an error code from accept(). This behavior differs

 from other BSD socket implementations. For reliable operation the ap?

 plication should detect the network errors defined for the protocol af?

 ter accept() and treat them like EAGAIN by retrying. In the case of

 TCP/IP, these are ENETDOWN, EPROTO, ENOPROTOOPT, EHOSTDOWN, ENONET,

 EHOSTUNREACH, EOPNOTSUPP, and ENETUNREACH.

ERRORS

 EAGAIN or EWOULDBLOCK

 The socket is marked nonblocking and no connections are present

 to be accepted. POSIX.1-2001 and POSIX.1-2008 allow either er?

 ror to be returned for this case, and do not require these con?

 stants to have the same value, so a portable application should

 check for both possibilities.

 EBADF sockfd is not an open file descriptor.

 ECONNABORTED

 A connection has been aborted.

 EFAULT The addr argument is not in a writable part of the user address

 space.

 EINTR The system call was interrupted by a signal that was caught be?

 fore a valid connection arrived; see signal(7).

 EINVAL Socket is not listening for connections, or addrlen is invalid

 (e.g., is negative).

 EINVAL (accept4()) invalid value in flags.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached.

 ENFILE The system-wide limit on the total number of open files has been

 reached.

 ENOBUFS, ENOMEM

 Not enough free memory. This often means that the memory allo? Page 3/5

 cation is limited by the socket buffer limits, not by the system

 memory.

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

 EOPNOTSUPP

 The referenced socket is not of type SOCK_STREAM.

 EPROTO Protocol error.

 In addition, Linux accept() may fail if:

 EPERM Firewall rules forbid connection.

 In addition, network errors for the new socket and as defined for the

 protocol may be returned. Various Linux kernels can return other er?

 rors such as ENOSR, ESOCKTNOSUPPORT, EPROTONOSUPPORT, ETIMEDOUT. The

 value ERESTARTSYS may be seen during a trace.

VERSIONS

 The accept4() system call is available starting with Linux 2.6.28; sup?

 port in glibc is available starting with version 2.10.

CONFORMING TO

 accept(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (accept() first ap?

 peared in 4.2BSD).

 accept4() is a nonstandard Linux extension.

 On Linux, the new socket returned by accept() does not inherit file

 status flags such as O_NONBLOCK and O_ASYNC from the listening socket.

 This behavior differs from the canonical BSD sockets implementation.

 Portable programs should not rely on inheritance or noninheritance of

 file status flags and always explicitly set all required flags on the

 socket returned from accept().

NOTES

 POSIX.1-2001 does not require the inclusion of <sys/types.h>, and this

 header file is not required on Linux. However, some historical (BSD)

 implementations required this header file, and portable applications

 are probably wise to include it.

 There may not always be a connection waiting after a SIGIO is delivered

 or select(2), poll(2), or epoll(7) return a readability event because Page 4/5

 the connection might have been removed by an asynchronous network error

 or another thread before accept() is called. If this happens, then the

 call will block waiting for the next connection to arrive. To ensure

 that accept() never blocks, the passed socket sockfd needs to have the

 O_NONBLOCK flag set (see socket(7)).

 For certain protocols which require an explicit confirmation, such as

 DECnet, accept() can be thought of as merely dequeuing the next connec?

 tion request and not implying confirmation. Confirmation can be im?

 plied by a normal read or write on the new file descriptor, and rejec?

 tion can be implied by closing the new socket. Currently, only DECnet

 has these semantics on Linux.

 The socklen_t type

 In the original BSD sockets implementation (and on other older systems)

 the third argument of accept() was declared as an int *. A POSIX.1g

 draft standard wanted to change it into a size_t *C; later POSIX stan?

 dards and glibc 2.x have socklen_t * .

EXAMPLES

 See bind(2).

SEE ALSO

 bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 ACCEPT(2)

Page 5/5

