
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'TAILQ_INSERT_BEFORE.3' command

$ man TAILQ_INSERT_BEFORE.3

TAILQ(3)                   Linux Programmer's Manual                  TAILQ(3)

NAME

       TAILQ_CONCAT,  TAILQ_EMPTY,  TAILQ_ENTRY,  TAILQ_FIRST,  TAILQ_FOREACH,

       TAILQ_FOREACH_REVERSE, TAILQ_HEAD, TAILQ_HEAD_INITIALIZER,  TAILQ_INIT,

       TAILQ_INSERT_AFTER,  TAILQ_INSERT_BEFORE,  TAILQ_INSERT_HEAD, TAILQ_IN?

       SERT_TAIL, TAILQ_LAST, TAILQ_NEXT, TAILQ_PREV, TAILQ_REMOVE - implemen?

       tation of a doubly linked tail queue

SYNOPSIS

       #include <sys/queue.h>

       void TAILQ_CONCAT(TAILQ_HEAD *head1, TAILQ_HEAD *head2,

                       TAILQ_ENTRY NAME);

       int TAILQ_EMPTY(TAILQ_HEAD *head);

       TAILQ_ENTRY(TYPE);

       struct TYPE *TAILQ_FIRST(TAILQ_HEAD *head);

       TAILQ_FOREACH(struct TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

       TAILQ_FOREACH_REVERSE(struct TYPE *var, TAILQ_HEAD *head, HEADNAME,

                       TAILQ_ENTRY NAME);

       TAILQ_HEAD(HEADNAME, TYPE);

       TAILQ_HEAD TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);

       void TAILQ_INIT(TAILQ_HEAD *head);

       void TAILQ_INSERT_AFTER(TAILQ_HEAD *head, struct TYPE *listelm,

                       struct TYPE *elm, TAILQ_ENTRY NAME);

       void TAILQ_INSERT_BEFORE(struct TYPE *listelm, struct TYPE *elm, Page 1/6



                       TAILQ_ENTRY NAME);

       void TAILQ_INSERT_HEAD(TAILQ_HEAD *head, struct TYPE *elm,

                       TAILQ_ENTRY NAME);

       void TAILQ_INSERT_TAIL(TAILQ_HEAD *head, struct TYPE *elm,

                       TAILQ_ENTRY NAME);

       struct TYPE *TAILQ_LAST(TAILQ_HEAD *head, HEADNAME);

       struct TYPE *TAILQ_NEXT(struct TYPE *elm, TAILQ_ENTRY NAME);

       struct TYPE *TAILQ_PREV(struct TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);

       void TAILQ_REMOVE(TAILQ_HEAD *head, struct TYPE *elm, TAILQ_ENTRY NAME);

DESCRIPTION

       These macros define and operate on doubly linked tail queues.

       In the macro definitions, TYPE is the name of a user defined structure,

       that must contain a field of type TAILQ_ENTRY, named NAME.   The  argu?

       ment  HEADNAME is the name of a user defined structure that must be de?

       clared using the macro TAILQ_HEAD().

       A tail queue is headed by  a  structure  defined  by  the  TAILQ_HEAD()

       macro.   This  structure  contains a pair of pointers, one to the first

       element in the tail queue and the other to the last element in the tail

       queue.  The elements are doubly linked so that an arbitrary element can

       be removed without traversing the tail  queue.   New  elements  can  be

       added  to  the tail queue after an existing element, before an existing

       element, at the head of the tail queue, or  at  the  end  of  the  tail

       queue.  A TAILQ_HEAD structure is declared as follows:

           TAILQ_HEAD(HEADNAME, TYPE) head;

       where  struct  HEADNAME is the structure to be defined, and struct TYPE

       is the type of the elements to  be  linked  into  the  tail  queue.   A

       pointer to the head of the tail queue can later be declared as:

           struct HEADNAME *headp;

       (The names head and headp are user selectable.)

       The  macro TAILQ_HEAD_INITIALIZER() evaluates to an initializer for the

       tail queue head.

       The macro TAILQ_CONCAT() concatenates the tail queue  headed  by  head2

       onto  the  end of the one headed by head1 removing all entries from the Page 2/6



       former.

       The macro TAILQ_EMPTY() evaluates to true if there are no items on  the

       tail queue.

       The macro TAILQ_ENTRY() declares a structure that connects the elements

       in the tail queue.

       The macro TAILQ_FIRST() returns the first item on  the  tail  queue  or

       NULL if the tail queue is empty.

       The  macro  TAILQ_FOREACH() traverses the tail queue referenced by head

       in the forward direction, assigning each element in turn to  var.   var

       is set to NULL if the loop completes normally, or if there were no ele?

       ments.

       The macro TAILQ_FOREACH_REVERSE() traverses the tail  queue  referenced

       by  head  in  the  reverse direction, assigning each element in turn to

       var.

       The macro TAILQ_INIT() initializes the tail queue referenced by head.

       The macro TAILQ_INSERT_HEAD() inserts the new element elm at  the  head

       of the tail queue.

       The macro TAILQ_INSERT_TAIL() inserts the new element elm at the end of

       the tail queue.

       The macro TAILQ_INSERT_AFTER() inserts the new element  elm  after  the

       element listelm.

       The  macro TAILQ_INSERT_BEFORE() inserts the new element elm before the

       element listelm.

       The macro TAILQ_LAST() returns the last item on the tail queue.  If the

       tail queue is empty the return value is NULL.

       The macro TAILQ_NEXT() returns the next item on the tail queue, or NULL

       if this item is the last.

       The macro TAILQ_PREV() returns the previous item on the tail queue,  or

       NULL if this item is the first.

       The macro TAILQ_REMOVE() removes the element elm from the tail queue.

RETURN VALUE

       TAILQ_EMPTY()  returns  nonzero  if the queue is empty, and zero if the

       queue contains at least one entry. Page 3/6



       TAILQ_FIRST(), TAILQ_LAST(), TAILQ_NEXT(), and  TAILQ_PREV()  return  a

       pointer  to  the  first, last, next or previous TYPE structure, respec?

       tively.

       TAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned to

       the queue head.

CONFORMING TO

       Not  in  POSIX.1,  POSIX.1-2001  or POSIX.1-2008.  Present on the BSDs.

       (TAILQ functions first appeared in 4.4BSD).

BUGS

       The macros TAILQ_FOREACH() and TAILQ_FOREACH_REVERSE() don't allow  var

       to  be removed or freed within the loop, as it would interfere with the

       traversal.   The  macros  TAILQ_FOREACH_SAFE()  and   TAILQ_FOREACH_RE?

       VERSE_SAFE(),  which  are  present  on  the BSDs but are not present in

       glibc, fix this limitation by allowing var to safely  be  removed  from

       the  list  and  freed from within the loop without interfering with the

       traversal.

EXAMPLES

       #include <stddef.h>

       #include <stdio.h>

       #include <stdlib.h>

       #include <sys/queue.h>

       struct entry {

           int data;

           TAILQ_ENTRY(entry) entries;             /* Tail queue. */

       };

       TAILQ_HEAD(tailhead, entry);

       int

       main(void)

       {

           struct entry *n1, *n2, *n3, *np;

           struct tailhead head;                   /* Tail queue head. */

           int i;

           TAILQ_INIT(&head);                      /* Initialize the queue. */ Page 4/6



           n1 = malloc(sizeof(struct entry));      /* Insert at the head. */

           TAILQ_INSERT_HEAD(&head, n1, entries);

           n1 = malloc(sizeof(struct entry));      /* Insert at the tail. */

           TAILQ_INSERT_TAIL(&head, n1, entries);

           n2 = malloc(sizeof(struct entry));      /* Insert after. */

           TAILQ_INSERT_AFTER(&head, n1, n2, entries);

           n3 = malloc(sizeof(struct entry));      /* Insert before. */

           TAILQ_INSERT_BEFORE(n2, n3, entries);

           TAILQ_REMOVE(&head, n2, entries);       /* Deletion. */

           free(n2);

                                                   /* Forward traversal. */

           i = 0;

           TAILQ_FOREACH(np, &head, entries)

               np->data = i++;

                                                   /* Reverse traversal. */

           TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)

               printf("%i\n", np->data);

                                                   /* TailQ Deletion. */

           n1 = TAILQ_FIRST(&head);

           while (n1 != NULL) {

               n2 = TAILQ_NEXT(n1, entries);

               free(n1);

               n1 = n2;

           }

           TAILQ_INIT(&head);

           exit(EXIT_SUCCESS);

       }

SEE ALSO

       insque(3), queue(7)

COLOPHON

       This page is part of release 5.10 of the Linux  man-pages  project.   A

       description  of  the project, information about reporting bugs, and the

       latest    version    of    this    page,    can     be     found     at Page 5/6



       https://www.kernel.org/doc/man-pages/.

GNU                               2020-12-21                          TAILQ(3)

Page 6/6


