
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'Containerfile.5' command

$ man Containerfile.5

CONTAINERFILE(5) Container User Manuals CONTAINERFILE(5)

NAME

 Containerfile(Dockerfile) - automate the steps of creating a container

 image

INTRODUCTION

 The Containerfile is a configuration file that automates the steps of

 creating a container image. It is similar to a Makefile. Container en?

 gines (Podman, Buildah, Docker) read instructions from the Container?

 file to automate the steps otherwise performed manually to create an

 image. To build an image, create a file called Containerfile.

 The Containerfile describes the steps taken to assemble the image. When

 the Containerfile has been created, call the buildah bud, podman build,

 docker build command, using the path of context directory that contains

 Containerfile as the argument. Podman and Buildah default to Container?

 file and will fall back to Dockerfile. Docker only will search for

 Dockerfile in the context directory.

 Dockerfile is an alternate name for the same object. Containerfile and

 Dockerfile support the same syntax.

SYNOPSIS

 INSTRUCTION arguments

 For example:

 FROM image

DESCRIPTION Page 1/18

 A Containerfile is a file that automates the steps of creating a con?

 tainer image. A Containerfile is similar to a Makefile.

USAGE

 buildah bud .

 podman build .

 -- Runs the steps and commits them, building a final image.

 The path to the source repository defines where to find the context

 of the

 build.

 buildah bud -t repository/tag .

 podman build -t repository/tag .

 -- specifies a repository and tag at which to save the new image if the

 build

 succeeds. The container engine runs the steps one-by-one, committing

 the result

 to a new image if necessary, before finally outputting the ID of the

 new

 image.

 Container engines re-use intermediate images whenever possible. This

 significantly

 accelerates the build process.

FORMAT

 FROM image

 FROM image:tag

 FROM image@digest

 -- The FROM instruction sets the base image for subsequent instruc?

 tions. A

 valid Containerfile must have either ARG or *FROM** as its first in?

 struction.

 If FROM is not the first instruction in the file, it may only be pre?

 ceded by

 one or more ARG instructions, which declare arguments that are used

 in the next FROM line in the Containerfile. Page 2/18

 The image can be any valid image. It is easy to start by pulling an

 image from the public

 repositories.

 -- FROM must appear at least once in the Containerfile.

 -- FROM The first FROM command must come before all other instructions

 in

 the Containerfile except ARG

 -- FROM may appear multiple times within a single Containerfile in or?

 der to create

 multiple images. Make a note of the last image ID output by the com?

 mit before

 each new FROM command.

 -- If no tag is given to the FROM instruction, container engines apply

 the

 latest tag. If the used tag does not exist, an error is returned.

 -- If no digest is given to the FROM instruction, container engines ap?

 ply the

 latest tag. If the used tag does not exist, an error is returned.

 MAINTAINER

 -- MAINTAINER sets the Author field for the generated images.

 Useful for providing users with an email or url for support.

 RUN

 -- RUN has two forms:

 # the command is run in a shell - /bin/sh -c

 RUN <command>

 # Executable form

 RUN ["executable", "param1", "param2"]

 RUN mounts

 --mount=type=TYPE,TYPE-SPECIFIC-OPTION[,...]

 Attach a filesystem mount to the container

 Current supported mount TYPES are bind, cache, secret and tmpfs.

 e.g.

 mount=type=bind,source=/path/on/host,destination=/path/in/container Page 3/18

 mount=type=tmpfs,tmpfs-size=512M,destination=/path/in/container

 mount=type=secret,id=mysecret cat /run/secrets/mysecret

 Common Options:

 ? src, source: mount source spec for bind and volume. Mandatory for bind. If `from` is specified, `src` is the

subpath in the `from` field.

 ? dst, destination, target: mount destination spec.

 ? ro, read-only: true (default) or false.

 Options specific to bind:

 ? bind-propagation: shared, slave, private, rshared, rslave, or rprivate(default). See also mount(2).

 . bind-nonrecursive: do not setup a recursive bind mount. By default it is recursive.

 ? from: stage or image name for the root of the source. Defaults to the build context.

 ? rw, read-write: allows writes on the mount.

 Options specific to tmpfs:

 ? tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.

 ? tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.

 ? tmpcopyup: Path that is shadowed by the tmpfs mount is recursively copied up to the tmpfs itself.

 Options specific to cache:

 ? id: Create a separate cache directory for a particular id.

 ? mode: File mode for new cache directory in octal. Default 0755.

 ? ro, readonly: read only cache if set.

 ? uid: uid for cache directory.

 ? gid: gid for cache directory.

 ? from: stage name for the root of the source. Defaults to host cache directory.

 ? rw, read-write: allows writes on the mount.

 RUN --network

 RUN --network allows control over which networking environment the com?

 mand is run in.

 Syntax: --network=<TYPE>

 Network types

 ??

 ?Type ? Description ?

 ??

 ?default ? ? Page 4/18

 ??

 ??#run---networkdefault? (default) ? Run in the default network. ?

 ??

 ?none ? ?

 ??

 ??#run---networknone? ? Run with no network access. ?

 ??

 ?host ? ?

 ??

 ??#run---networkhost? ? Run in the host's network ?

 ? ? environment. ?

 ??

 RUN --network=default

 Equivalent to not supplying a flag at all, the command is run in the

 default network for the build.

 RUN --network=none

 The command is run with no network access (lo is still available, but

 is isolated to this process).

 Example: isolating external effects

 FROM python:3.6

 ADD mypackage.tgz wheels/

 RUN --network=none pip install --find-links wheels mypackage

 pip will only be able to install the packages provided in the tarfile,

 which can be controlled by an earlier build stage.

 RUN --network=host

 The command is run in the host's network environment (similar to buil?

 dah build --network=host, but on a per-instruction basis)

 RUN Secrets

 The RUN command has a feature to allow the passing of secret informa?

 tion into the image build. These secrets files can be used during the

 RUN command but are not committed to the final image. The RUN command

 supports the --mount option to identify the secret file. A secret file

 from the host is mounted into the container while the image is being Page 5/18

 built.

 Container engines pass secret the secret file into the build using the

 --secret flag.

 --mount=type=secret,TYPE-SPECIFIC-OPTION[,...]

 ? id is the identifier for the secret passed into the buildah

 bud --secret or podman build --secret. This identifier is as?

 sociated with the RUN --mount identifier to use in the Con?

 tainerfile.

 ? dst|target|destination rename the secret file to a specific

 file in the Containerfile RUN command to use.

 ? type=secret tells the --mount command that it is mounting in a

 secret file

 # shows secret from default secret location:

 RUN --mount=type=secret,id=mysecret cat /run/secrets/mysecret

 # shows secret from custom secret location:

 RUN --mount=type=secret,id=mysecret,dst=/foobar cat /foobar

 The secret needs to be passed to the build using the --secret flag. The

 final image built does not container the secret file:

 buildah bud --no-cache --secret id=mysecret,src=mysecret.txt .

 -- The RUN instruction executes any commands in a new layer on top of

 the current

 image and commits the results. The committed image is used for the

 next step in

 Containerfile.

 -- Layering RUN instructions and generating commits conforms to the

 core

 concepts of container engines where commits are cheap and containers

 can be created from

 any point in the history of an image. This is similar to source con?

 trol. The

 exec form makes it possible to avoid shell string munging. The exec

 form makes

 it possible to RUN commands using a base image that does not contain Page 6/18

 /bin/sh.

 Note that the exec form is parsed as a JSON array, which means that you

 must

 use double-quotes (") around words, not single-quotes (').

 CMD

 -- CMD has three forms:

 # Executable form

 CMD ["executable", "param1", "param2"]`

 # Provide default arguments to ENTRYPOINT

 CMD ["param1", "param2"]`

 # the command is run in a shell - /bin/sh -c

 CMD command param1 param2

 -- There should be only one CMD in a Containerfile. If more than one

 CMD is listed, only

 the last CMD takes effect.

 The main purpose of a CMD is to provide defaults for an executing

 container.

 These defaults may include an executable, or they can omit the exe?

 cutable. If

 they omit the executable, an ENTRYPOINT must be specified.

 When used in the shell or exec formats, the CMD instruction sets the

 command to

 be executed when running the image.

 If you use the shell form of the CMD, the <command> executes in

 /bin/sh -c:

 Note that the exec form is parsed as a JSON array, which means that you

 must

 use double-quotes (") around words, not single-quotes (').

 FROM ubuntu

 CMD echo "This is a test." | wc -

 -- If you run command without a shell, then you must express the com?

 mand as a

 JSON array and give the full path to the executable. This array form Page 7/18

 is the

 preferred form of CMD. All additional parameters must be individually

 expressed

 as strings in the array:

 FROM ubuntu

 CMD ["/usr/bin/wc","--help"]

 -- To make the container run the same executable every time, use ENTRY?

 POINT in

 combination with CMD.

 If the user specifies arguments to podman run or docker run, the

 specified commands

 override the default in CMD.

 Do not confuse RUN with CMD. RUN runs a command and commits the re?

 sult.

 CMD executes nothing at build time, but specifies the intended com?

 mand for

 the image.

 LABEL

 -- LABEL <key>=<value> [<key>=<value> ...]or

 LABEL <key>[<value>]

 LABEL <key>[<value>]

 ...

 The LABEL instruction adds metadata to an image. A LABEL is a

 key-value pair. To specify a LABEL without a value, simply use an

 empty

 string. To include spaces within a LABEL value, use quotes and

 backslashes as you would in command-line parsing.

 LABEL com.example.vendor="ACME Incorporated"

 LABEL com.example.vendor "ACME Incorporated"

 LABEL com.example.vendor.is-beta ""

 LABEL com.example.vendor.is-beta=

 LABEL com.example.vendor.is-beta=""

 An image can have more than one label. To specify multiple labels, sep? Page 8/18

 arate

 each key-value pair by a space.

 Labels are additive including LABELs in FROM images. As the system

 encounters and then applies a new label, new keys override any previ?

 ous

 labels with identical keys.

 To display an image's labels, use the buildah inspect command.

 EXPOSE

 -- EXPOSE <port> [<port>...]

 The EXPOSE instruction informs the container engine that the con?

 tainer listens on the

 specified network ports at runtime. The container engine uses this

 information to

 interconnect containers using links and to set up port redirection on

 the host

 system.

 ENV

 -- ENV <key> <value>

 The ENV instruction sets the environment variable to

 the value <value>. This value is passed to all future

 RUN, ENTRYPOINT, and CMD instructions. This is

 functionally equivalent to prefixing the command with <key>=<value>.

 The

 environment variables that are set with ENV persist when a container

 is run

 from the resulting image. Use podman inspect to inspect these values,

 and

 change them using podman run --env <key>=<value>.

 Note that setting "ENV DEBIAN_FRONTEND=noninteractive" may cause

 unintended consequences, because it will persist when the container

 is run

 interactively, as with the following command: podman run -t -i image

 bash Page 9/18

 ADD

 -- ADD has two forms:

 ADD <src> <dest>

 # Required for paths with whitespace

 ADD ["<src>",... "<dest>"]

 The ADD instruction copies new files, directories

 or remote file URLs to the filesystem of the container at path

 <dest>.

 Multiple <src> resources may be specified but if they are files or

 directories

 then they must be relative to the source directory that is being

 built

 (the context of the build). The <dest> is the absolute path, or path

 relative

 to WORKDIR, into which the source is copied inside the target con?

 tainer.

 If the <src> argument is a local file in a recognized compression

 format

 (tar, gzip, bzip2, etc) then it is unpacked at the specified <dest>

 in the

 container's filesystem. Note that only local compressed files will

 be unpacked,

 i.e., the URL download and archive unpacking features cannot be used

 together.

 All new directories are created with mode 0755 and with the uid and

 gid of 0.

 COPY

 -- COPY has two forms:

 COPY <src> <dest>

 # Required for paths with whitespace

 COPY ["<src>",... "<dest>"]

 The COPY instruction copies new files from <src> and

 adds them to the filesystem of the container at path . The <src> must Page 10/18

 be

 the path to a file or directory relative to the source directory that

 is

 being built (the context of the build) or a remote file URL. The

 <dest> is an

 absolute path, or a path relative to WORKDIR, into which the source

 will

 be copied inside the target container. If you COPY an archive file it

 will

 land in the container exactly as it appears in the build context

 without any

 attempt to unpack it. All new files and directories are created with

 mode 0755

 and with the uid and gid of 0.

 ENTRYPOINT

 -- ENTRYPOINT has two forms:

 # executable form

 ENTRYPOINT ["executable", "param1", "param2"]`

 # run command in a shell - /bin/sh -c

 ENTRYPOINT command param1 param2

 -- An ENTRYPOINT helps you configure a

 container that can be run as an executable. When you specify an EN?

 TRYPOINT,

 the whole container runs as if it was only that executable. The EN?

 TRYPOINT

 instruction adds an entry command that is not overwritten when argu?

 ments are

 passed to podman run. This is different from the behavior of CMD.

 This allows

 arguments to be passed to the entrypoint, for instance podman run

 <image> -d

 passes the -d argument to the ENTRYPOINT. Specify parameters either

 in the Page 11/18

 ENTRYPOINT JSON array (as in the preferred exec form above), or by

 using a CMD

 statement. Parameters in the ENTRYPOINT are not overwritten by the

 podman run arguments. Parameters specified via CMD are overwritten by

 podman run arguments. Specify a plain string for the ENTRYPOINT, and

 it will execute in

 /bin/sh -c, like a CMD instruction:

 FROM ubuntu

 ENTRYPOINT wc -l -

 This means that the Containerfile's image always takes stdin as input

 (that's

 what "-" means), and prints the number of lines (that's what "-l"

 means). To

 make this optional but default, use a CMD:

 FROM ubuntu

 CMD ["-l", "-"]

 ENTRYPOINT ["/usr/bin/wc"]

 VOLUME

 -- VOLUME ["/data"]

 The VOLUME instruction creates a mount point with the specified name

 and marks

 it as holding externally-mounted volumes from the native host or from

 other

 containers.

 USER

 -- USER daemon

 Sets the username or UID used for running subsequent commands.

 The USER instruction can optionally be used to set the group or GID.

 The

 following examples are all valid:

 USER [user | user:group | uid | uid:gid | user:gid | uid:group]

 Until the USER instruction is set, instructions will be run as root.

 The USER Page 12/18

 instruction can be used any number of times in a Containerfile, and

 will only affect

 subsequent commands.

 WORKDIR

 -- WORKDIR /path/to/workdir

 The WORKDIR instruction sets the working directory for the RUN, CMD,

 ENTRYPOINT, COPY and ADD Containerfile commands that follow it. It

 can

 be used multiple times in a single Containerfile. Relative paths are

 defined

 relative to the path of the previous WORKDIR instruction. For exam?

 ple:

 WORKDIR /a

 WORKDIR b

 WORKDIR c

 RUN pwd

 In the above example, the output of the pwd command is a/b/c.

 ARG

 -- ARG [=]

 The ARG instruction defines a variable that users can pass at build-

 time to

 the builder with the podman build and buildah build commands using

 the

 --build-arg <varname>=<value> flag. If a user specifies a build argu?

 ment that

 was not defined in the Containerfile, the build outputs a warning.

 Note that a second FROM in a Containerfile sets the values associated

 with an

 Arg variable to nil and they must be reset if they are to be used

 later in

 the Containerfile

 [Warning] One or more build-args [foo] were not consumed

 The Containerfile author can define a single variable by specifying ARG Page 13/18

 once or many

 variables by specifying ARG more than once. For example, a valid Con?

 tainerfile:

 FROM busybox

 ARG user1

 ARG buildno

 ...

 A Containerfile author may optionally specify a default value for an

 ARG instruction:

 FROM busybox

 ARG user1=someuser

 ARG buildno=1

 ...

 If an ARG value has a default and if there is no value passed at build-

 time, the

 builder uses the default.

 An ARG variable definition comes into effect from the line on which it

 is

 defined in the Containerfile not from the argument's use on the com?

 mand-line or

 elsewhere. For example, consider this Containerfile:

 1 FROM busybox

 2 USER ${user:-some_user}

 3 ARG user

 4 USER $user

 ...

 A user builds this file by calling:

 $ podman build --build-arg user=what_user Containerfile

 The USER at line 2 evaluates to some_user as the user variable is de?

 fined on the

 subsequent line 3. The USER at line 4 evaluates to what_user as user

 is

 defined and the what_user value was passed on the command line. Prior Page 14/18

 to its definition by an

 ARG instruction, any use of a variable results in an empty string.

 Warning: It is not recommended to use build-time variables for

 passing secrets like github keys, user credentials etc. Build-

 time variable

 values are visible to any user of the image with the podman

 history command.

 You can use an ARG or an ENV instruction to specify variables that are

 available to the RUN instruction. Environment variables defined using

 the

 ENV instruction always override an ARG instruction of the same name.

 Consider

 this Containerfile with an ENV and ARG instruction.

 1 FROM ubuntu

 2 ARG CONT_IMG_VER

 3 ENV CONT_IMG_VER=v1.0.0

 4 RUN echo $CONT_IMG_VER

 Then, assume this image is built with this command:

 $ podman build --build-arg CONT_IMG_VER=v2.0.1 Containerfile

 In this case, the RUN instruction uses v1.0.0 instead of the ARG set?

 ting

 passed by the user:v2.0.1 This behavior is similar to a shell

 script where a locally scoped variable overrides the variables passed

 as

 arguments or inherited from environment, from its point of defini?

 tion.

 Using the example above but a different ENV specification you can cre?

 ate more

 useful interactions between ARG and ENV instructions:

 1 FROM ubuntu

 2 ARG CONT_IMG_VER

 3 ENV CONT_IMG_VER=${CONT_IMG_VER:-v1.0.0}

 4 RUN echo $CONT_IMG_VER Page 15/18

 Unlike an ARG instruction, ENV values are always persisted in the built

 image. Consider a podman build without the --build-arg flag:

 $ podman build Containerfile

 Using this Containerfile example, CONT_IMG_VER is still persisted in

 the image but

 its value would be v1.0.0 as it is the default set in line 3 by the

 ENV instruction.

 The variable expansion technique in this example allows you to pass ar?

 guments

 from the command line and persist them in the final image by leverag?

 ing the

 ENV instruction. Variable expansion is only supported for a limited

 set of

 Containerfile instructions. ?#environment-replacement?

 Container engines have a set of predefined ARG variables that you can

 use without a

 corresponding ARG instruction in the Containerfile.

 ? HTTP_PROXY

 ? http_proxy

 ? HTTPS_PROXY

 ? https_proxy

 ? FTP_PROXY

 ? ftp_proxy

 ? NO_PROXY

 ? no_proxy

 ? ALL_PROXY

 ? all_proxy

 To use these, pass them on the command line using --build-arg flag, for

 example:

 $ podman build --build-arg HTTPS_PROXY=https://my-proxy.example.com .

 ONBUILD

 -- ONBUILD [INSTRUCTION]

 The ONBUILD instruction adds a trigger instruction to an image. The Page 16/18

 trigger is executed at a later time, when the image is used as the

 base for

 another build. Container engines execute the trigger in the context

 of the downstream

 build, as if the trigger existed immediately after the FROM instruc?

 tion in

 the downstream Containerfile.

 You can register any build instruction as a trigger. A trigger is use?

 ful if

 you are defining an image to use as a base for building other images.

 For

 example, if you are defining an application build environment or a

 daemon that

 is customized with a user-specific configuration.

 Consider an image intended as a reusable python application builder. It

 must

 add application source code to a particular directory, and might need

 a build

 script called after that. You can't just call ADD and RUN now, be?

 cause

 you don't yet have access to the application source code, and it is

 different

 for each application build.

 -- Providing application developers with a boilerplate Containerfile to

 copy-paste

 into their application is inefficient, error-prone, and

 difficult to update because it mixes with application-specific code.

 The solution is to use ONBUILD to register instructions in advance,

 to

 run later, during the next build stage.

SEE ALSO

 buildah(1), podman(1), docker(1)

HISTORY Page 17/18

 May 2014, Compiled by Zac Dover (zdover at redhat dot com) based on docker.com Dockerfile documentation.

 Feb 2015, updated by Brian Goff (cpuguy83@gmail.com) for readability

 Sept 2015, updated by Sally O'Malley (somalley@redhat.com)

 Oct 2016, updated by Addam Hardy (addam.hardy@gmail.com)

 Aug 2021, converted Dockerfile man page to Containerfile by Dan Walsh (dwalsh@redhat.com)

 Aug 2021 CONTAINERFILE(5)

Page 18/18

