
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'CMSG_FIRSTHDR.3' command

$ man CMSG_FIRSTHDR.3

CMSG(3) Linux Programmer's Manual CMSG(3)

NAME

 CMSG_ALIGN, CMSG_SPACE, CMSG_NXTHDR, CMSG_FIRSTHDR - access ancillary

 data

SYNOPSIS

 #include <sys/socket.h>

 struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);

 struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh,

 struct cmsghdr *cmsg);

 size_t CMSG_ALIGN(size_t length);

 size_t CMSG_SPACE(size_t length);

 size_t CMSG_LEN(size_t length);

 unsigned char *CMSG_DATA(struct cmsghdr *cmsg);

DESCRIPTION

 These macros are used to create and access control messages (also

 called ancillary data) that are not a part of the socket payload. This

 control information may include the interface the packet was received

 on, various rarely used header fields, an extended error description, a

 set of file descriptors, or UNIX credentials. For instance, control

 messages can be used to send additional header fields such as IP op?

 tions. Ancillary data is sent by calling sendmsg(2) and received by

 calling recvmsg(2). See their manual pages for more information.

 Ancillary data is a sequence of cmsghdr structures with appended data. Page 1/5

 See the specific protocol man pages for the available control message

 types. The maximum ancillary buffer size allowed per socket can be set

 using /proc/sys/net/core/optmem_max; see socket(7).

 The cmsghdr structure is defined as follows:

 struct cmsghdr {

 size_t cmsg_len; /* Data byte count, including header

 (type is socklen_t in POSIX) */

 int cmsg_level; /* Originating protocol */

 int cmsg_type; /* Protocol-specific type */

 /* followed by

 unsigned char cmsg_data[]; */

 };

 The sequence of cmsghdr structures should never be accessed directly.

 Instead, use only the following macros:

 * CMSG_FIRSTHDR() returns a pointer to the first cmsghdr in the ancil?

 lary data buffer associated with the passed msghdr. It returns NULL

 if there isn't enough space for a cmsghdr in the buffer.

 * CMSG_NXTHDR() returns the next valid cmsghdr after the passed cms?

 ghdr. It returns NULL when there isn't enough space left in the

 buffer.

 When initializing a buffer that will contain a series of cmsghdr

 structures (e.g., to be sent with sendmsg(2)), that buffer should

 first be zero-initialized to ensure the correct operation of

 CMSG_NXTHDR().

 * CMSG_ALIGN(), given a length, returns it including the required

 alignment. This is a constant expression.

 * CMSG_SPACE() returns the number of bytes an ancillary element with

 payload of the passed data length occupies. This is a constant ex?

 pression.

 * CMSG_DATA() returns a pointer to the data portion of a cmsghdr. The

 pointer returned cannot be assumed to be suitably aligned for ac?

 cessing arbitrary payload data types. Applications should not cast

 it to a pointer type matching the payload, but should instead use Page 2/5

 memcpy(3) to copy data to or from a suitably declared object.

 * CMSG_LEN() returns the value to store in the cmsg_len member of the

 cmsghdr structure, taking into account any necessary alignment. It

 takes the data length as an argument. This is a constant expres?

 sion.

 To create ancillary data, first initialize the msg_controllen member of

 the msghdr with the length of the control message buffer. Use

 CMSG_FIRSTHDR() on the msghdr to get the first control message and

 CMSG_NXTHDR() to get all subsequent ones. In each control message,

 initialize cmsg_len (with CMSG_LEN()), the other cmsghdr header fields,

 and the data portion using CMSG_DATA(). Finally, the msg_controllen

 field of the msghdr should be set to the sum of the CMSG_SPACE() of the

 length of all control messages in the buffer. For more information on

 the msghdr, see recvmsg(2).

CONFORMING TO

 This ancillary data model conforms to the POSIX.1g draft, 4.4BSD-Lite,

 the IPv6 advanced API described in RFC 2292 and SUSv2.

 CMSG_FIRSTHDR(), CMSG_NXTHDR(), and CMSG_DATA() are specified in

 POSIX.1-2008. CMSG_SPACE() and CMSG_LEN() will be included in the next

 POSIX release (Issue 8).

 CMSG_ALIGN() is a Linux extension.

NOTES

 For portability, ancillary data should be accessed using only the

 macros described here. CMSG_ALIGN() is a Linux extension and should

 not be used in portable programs.

 In Linux, CMSG_LEN(), CMSG_DATA(), and CMSG_ALIGN() are constant ex?

 pressions (assuming their argument is constant), meaning that these

 values can be used to declare the size of global variables. This may

 not be portable, however.

EXAMPLES

 This code looks for the IP_TTL option in a received ancillary buffer:

 struct msghdr msgh;

 struct cmsghdr *cmsg; Page 3/5

 int received_ttl;

 /* Receive auxiliary data in msgh */

 for (cmsg = CMSG_FIRSTHDR(&msgh); cmsg != NULL;

 cmsg = CMSG_NXTHDR(&msgh, cmsg)) {

 if (cmsg->cmsg_level == IPPROTO_IP

 && cmsg->cmsg_type == IP_TTL) {

 memcpy(&receive_ttl, CMSG_DATA(cmsg), sizeof(received_ttl));

 break;

 }

 }

 if (cmsg == NULL) {

 /* Error: IP_TTL not enabled or small buffer or I/O error */

 }

 The code below passes an array of file descriptors over a UNIX domain

 socket using SCM_RIGHTS:

 struct msghdr msg = { 0 };

 struct cmsghdr *cmsg;

 int myfds[NUM_FD]; /* Contains the file descriptors to pass */

 char iobuf[1];

 struct iovec io = {

 .iov_base = iobuf,

 .iov_len = sizeof(iobuf)

 };

 union { /* Ancillary data buffer, wrapped in a union

 in order to ensure it is suitably aligned */

 char buf[CMSG_SPACE(sizeof(myfds))];

 struct cmsghdr align;

 } u;

 msg.msg_iov = &io;

 msg.msg_iovlen = 1;

 msg.msg_control = u.buf;

 msg.msg_controllen = sizeof(u.buf);

 cmsg = CMSG_FIRSTHDR(&msg); Page 4/5

 cmsg->cmsg_level = SOL_SOCKET;

 cmsg->cmsg_type = SCM_RIGHTS;

 cmsg->cmsg_len = CMSG_LEN(sizeof(myfds));

 memcpy(CMSG_DATA(cmsg), myfds, sizeof(myfds));

SEE ALSO

 recvmsg(2), sendmsg(2)

 RFC 2292

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CMSG(3)

Page 5/5

