
PowerShell Get-Help on command 'Write-Progress'

PS C:\Users\wahid> Get-Help Write-Progress

NAME

    Write-Progress

    

SYNOPSIS

    Displays a progress bar within a PowerShell command window.

    

    

SYNTAX

    Write-Progress [-Activity] <System.String> [[-Status] <System.String>] [[-Id] 

    <System.Int32>] [-Completed] [-CurrentOperation <System.String>] [-ParentId 

    <System.Int32>] [-PercentComplete <System.Int32>] [-SecondsRemaining 

    <System.Int32>] [-SourceId <System.Int32>] [<CommonParameters>]

    

    

DESCRIPTION

    The `Write-Progress` cmdlet displays a progress bar in a PowerShell command 

    window that depicts the status of a running command or script. You can select 

    the indicators that the bar reflects and the text that appears above and below 

    the progress bar.
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PARAMETERS

    -Activity <System.String>

        Specifies the first line of text in the heading above the status bar. This 

        text describes the activity whose progress is being reported.

        

    -Completed <System.Management.Automation.SwitchParameter>

        Indicates whether the progress bar is visible. If this parameter is 

        omitted, `Write-Progress` displays progress information.

        

    -CurrentOperation <System.String>

        Specifies the line of text below the progress bar. This text describes the 

        operation that's currently taking place.

        

    -Id <System.Int32>

        Specifies an ID that distinguishes each progress bar from the others. Use 

        this parameter when you are creating more than one progress bar in a 

        single command. If the progress bars don't have different IDs, they're 

        superimposed instead of being displayed in a series. Negative values 

        aren't allowed.

        

    -ParentId <System.Int32>

        Specifies the parent activity of the current activity. Use the value `-1` 

        if the current activity has no parent activity.

        

    -PercentComplete <System.Int32>

        Specifies the percentage of the activity that's completed. Use the value 

        `-1` if the percentage complete is unknown or not applicable.

        

    -SecondsRemaining <System.Int32>

        Specifies the projected number of seconds remaining until the activity is 

        completed. Use the value `-1` if the number of seconds remaining is 

        unknown or not applicable.
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    -SourceId <System.Int32>

        Specifies the source of the record. You can use this in place of Id but 

        can't be used with other parameters like ParentId .

        

    -Status <System.String>

        Specifies the second line of text in the heading above the status bar. 

        This text describes current state of the activity.

        

    <CommonParameters>

        This cmdlet supports the common parameters: Verbose, Debug,

        ErrorAction, ErrorVariable, WarningAction, WarningVariable,

        OutBuffer, PipelineVariable, and OutVariable. For more information, see 

        about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). 

    

    -------- Example 1: Display the progress of a For loop --------

    

    for ($i = 1; $i -le 100; $i++ ) {

        Write-Progress -Activity "Search in Progress" -Status "$i% Complete:" 

    -PercentComplete $i

        Start-Sleep -Milliseconds 250

    }

    

    This command displays the progress of a `for` loop that counts from 1 to 100.

    

    The `Write-Progress` cmdlet includes a status bar heading `Activity`, a status 

    line, and the variable `$i` (the counter in the `for` loop), which indicates 

    the relative completeness of the task.

    ----- Example 2: Display the progress of nested For loops -----

    

    for($I = 0; $I -lt 10; $I++ ) {

        $OuterLoopProgressParameters = @{

            Activity         = 'Updating'
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            PercentComplete  = $I * 10

            CurrentOperation = 'OuterLoop'

        }

        Write-Progress @OuterLoopProgressParameters

        for($j = 1; $j -lt 101; $j++ ) {

            $InnerLoopProgressParameters = @{

                ID               = 1

                Activity         = 'Updating'

                Status           = 'Progress'

                PercentComplete  = $j

                CurrentOperation = 'InnerLoop'

            }

            Write-Progress @InnerLoopProgressParameters

            Start-Sleep -Milliseconds 25

        }

    }

    

    Updating

    Progress ->

     [ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo]

    OuterLoop

    Updating

    Progress

     [oooooooooooooooooo                                                   ]

    InnerLoop

    

    This example displays the progress of two nested For loops, each of which is 

    represented by a progress bar.

    

    The `Write-Progress` command for the second progress bar includes the Id 

    parameter that distinguishes it from the first progress bar.
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    other instead of being displayed one below the other.

    - Example 3: Display the progress while searching for a string -

    

    # Use Get-EventLog to get the events in the System log and store them in the 

    $Events variable.

    $Events = Get-EventLog -LogName system

    # Pipe the events to the ForEach-Object cmdlet.

    $Events | ForEach-Object -Begin {

        # In the Begin block, use Clear-Host to clear the screen.

        Clear-Host

        # Set the $i counter variable to zero.

        $i = 0

        # Set the $out variable to an empty string.

        $out = ""

    } -Process {

        # In the Process script block search the message property of each incoming 

    object for "bios".

        if($_.message -like "*bios*")

        {

            # Append the matching message to the out variable.

            $out=$out + $_.Message

        }

        # Increment the $i counter variable which is used to create the progress 

    bar.

        $i = $i+1

        # Determine the completion percentage

        $Completed = ($i/$Events.count) * 100

        # Use Write-Progress to output a progress bar.

        # The Activity and Status parameters create the first and second lines of 

    the progress bar

        # heading, respectively.

        Write-Progress -Activity "Searching Events" -Status "Progress:" 

    -PercentComplete $Completed Page 5/7



    } -End {

        # Display the matching messages using the out variable.

        $out

    }

    

    This command displays the progress of a command to find the string "bios" in 

    the System event log.

    

    The PercentComplete parameter value is calculated by dividing the number of 

    events that have been processed `$i` by the total number of events retrieved 

    `$Events.count` and then multiplying that result by 100.

    Example 4: Display progress for each level of a nested process

    

    foreach ( $i in 1..10 ) {

      Write-Progress -Id 0 "Step $i"

      foreach ( $j in 1..10 ) {

        Write-Progress -Id 1 -ParentId 0 "Step $i - Substep $j"

        foreach ( $k in 1..10 ) {

          Write-Progress -Id 2  -ParentId 1 "Step $i - Substep $j - iteration $k"

          Start-Sleep -Milliseconds 150

        }

      }

    }

    

    Step 1

         Processing

        Step 1 - Substep 2

             Processing

            Step 1 - Substep 2 - Iteration 3

                 Processing

    

    In this example you can use the ParentId parameter to have indented output to 
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REMARKS

    To see the examples, type: "get-help Write-Progress -examples".

    For more information, type: "get-help Write-Progress -detailed".

    For technical information, type: "get-help Write-Progress -full".

    For online help, type: "get-help Write-Progress -online"
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