
PowerShell Get-Help on command 'Write-Progress'

PS C:\Users\wahid> Get-Help Write-Progress

NAME

 Write-Progress

SYNOPSIS

 Displays a progress bar within a PowerShell command window.

SYNTAX

 Write-Progress [-Activity] <System.String> [[-Status] <System.String>] [[-Id]

 <System.Int32>] [-Completed] [-CurrentOperation <System.String>] [-ParentId

 <System.Int32>] [-PercentComplete <System.Int32>] [-SecondsRemaining

 <System.Int32>] [-SourceId <System.Int32>] [<CommonParameters>]

DESCRIPTION

 The `Write-Progress` cmdlet displays a progress bar in a PowerShell command

 window that depicts the status of a running command or script. You can select

 the indicators that the bar reflects and the text that appears above and below

 the progress bar.

Page 1/7

PARAMETERS

 -Activity <System.String>

 Specifies the first line of text in the heading above the status bar. This

 text describes the activity whose progress is being reported.

 -Completed <System.Management.Automation.SwitchParameter>

 Indicates whether the progress bar is visible. If this parameter is

 omitted, `Write-Progress` displays progress information.

 -CurrentOperation <System.String>

 Specifies the line of text below the progress bar. This text describes the

 operation that's currently taking place.

 -Id <System.Int32>

 Specifies an ID that distinguishes each progress bar from the others. Use

 this parameter when you are creating more than one progress bar in a

 single command. If the progress bars don't have different IDs, they're

 superimposed instead of being displayed in a series. Negative values

 aren't allowed.

 -ParentId <System.Int32>

 Specifies the parent activity of the current activity. Use the value `-1`

 if the current activity has no parent activity.

 -PercentComplete <System.Int32>

 Specifies the percentage of the activity that's completed. Use the value

 `-1` if the percentage complete is unknown or not applicable.

 -SecondsRemaining <System.Int32>

 Specifies the projected number of seconds remaining until the activity is

 completed. Use the value `-1` if the number of seconds remaining is

 unknown or not applicable.

 Page 2/7

 -SourceId <System.Int32>

 Specifies the source of the record. You can use this in place of Id but

 can't be used with other parameters like ParentId .

 -Status <System.String>

 Specifies the second line of text in the heading above the status bar.

 This text describes current state of the activity.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------- Example 1: Display the progress of a For loop --------

 for ($i = 1; $i -le 100; $i++) {

 Write-Progress -Activity "Search in Progress" -Status "$i% Complete:"

 -PercentComplete $i

 Start-Sleep -Milliseconds 250

 }

 This command displays the progress of a `for` loop that counts from 1 to 100.

 The `Write-Progress` cmdlet includes a status bar heading `Activity`, a status

 line, and the variable `$i` (the counter in the `for` loop), which indicates

 the relative completeness of the task.

 ----- Example 2: Display the progress of nested For loops -----

 for($I = 0; $I -lt 10; $I++) {

 $OuterLoopProgressParameters = @{

 Activity = 'Updating'

 Status = 'Progress->' Page 3/7

 PercentComplete = $I * 10

 CurrentOperation = 'OuterLoop'

 }

 Write-Progress @OuterLoopProgressParameters

 for($j = 1; $j -lt 101; $j++) {

 $InnerLoopProgressParameters = @{

 ID = 1

 Activity = 'Updating'

 Status = 'Progress'

 PercentComplete = $j

 CurrentOperation = 'InnerLoop'

 }

 Write-Progress @InnerLoopProgressParameters

 Start-Sleep -Milliseconds 25

 }

 }

 Updating

 Progress ->

 [ooo]

 OuterLoop

 Updating

 Progress

 [oooooooooooooooooo]

 InnerLoop

 This example displays the progress of two nested For loops, each of which is

 represented by a progress bar.

 The `Write-Progress` command for the second progress bar includes the Id

 parameter that distinguishes it from the first progress bar.

 Without the Id parameter, the progress bars would be superimposed on each Page 4/7

 other instead of being displayed one below the other.

 - Example 3: Display the progress while searching for a string -

 # Use Get-EventLog to get the events in the System log and store them in the

 $Events variable.

 $Events = Get-EventLog -LogName system

 # Pipe the events to the ForEach-Object cmdlet.

 $Events | ForEach-Object -Begin {

 # In the Begin block, use Clear-Host to clear the screen.

 Clear-Host

 # Set the $i counter variable to zero.

 $i = 0

 # Set the $out variable to an empty string.

 $out = ""

 } -Process {

 # In the Process script block search the message property of each incoming

 object for "bios".

 if($_.message -like "*bios*")

 {

 # Append the matching message to the out variable.

 $out=$out + $_.Message

 }

 # Increment the $i counter variable which is used to create the progress

 bar.

 $i = $i+1

 # Determine the completion percentage

 $Completed = ($i/$Events.count) * 100

 # Use Write-Progress to output a progress bar.

 # The Activity and Status parameters create the first and second lines of

 the progress bar

 # heading, respectively.

 Write-Progress -Activity "Searching Events" -Status "Progress:"

 -PercentComplete $Completed Page 5/7

 } -End {

 # Display the matching messages using the out variable.

 $out

 }

 This command displays the progress of a command to find the string "bios" in

 the System event log.

 The PercentComplete parameter value is calculated by dividing the number of

 events that have been processed `$i` by the total number of events retrieved

 `$Events.count` and then multiplying that result by 100.

 Example 4: Display progress for each level of a nested process

 foreach ($i in 1..10) {

 Write-Progress -Id 0 "Step $i"

 foreach ($j in 1..10) {

 Write-Progress -Id 1 -ParentId 0 "Step $i - Substep $j"

 foreach ($k in 1..10) {

 Write-Progress -Id 2 -ParentId 1 "Step $i - Substep $j - iteration $k"

 Start-Sleep -Milliseconds 150

 }

 }

 }

 Step 1

 Processing

 Step 1 - Substep 2

 Processing

 Step 1 - Substep 2 - Iteration 3

 Processing

 In this example you can use the ParentId parameter to have indented output to

 show parent-child relationships in the progress of each step. Page 6/7

REMARKS

 To see the examples, type: "get-help Write-Progress -examples".

 For more information, type: "get-help Write-Progress -detailed".

 For technical information, type: "get-help Write-Progress -full".

 For online help, type: "get-help Write-Progress -online"

Page 7/7

