
PowerShell Get-Help on command 'Where-Object'

PS C:\Users\wahid> Get-Help Where-Object

NAME

 Where-Object

SYNOPSIS

 Selects objects from a collection based on their property values.

SYNTAX

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CContains [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CEQ [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CGE [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]
Page 1/19

 <System.Management.Automation.PSObject>] -CGT [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CIn [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CLE [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CLike [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CLT [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CMatch [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CNE [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CNotContains [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CNotIn [-InputObject Page 2/19

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CNotLike [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -CNotMatch [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -Contains [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-EQ] [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-FilterScript] <System.Management.Automation.ScriptBlock>

 [-InputObject <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -GE [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -GT [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] -In [-InputObject

 <System.Management.Automation.PSObject>] [<CommonParameters>]

 Page 3/19

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -Is [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -IsNot [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -LE [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -Like [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -LT [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -Match [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -NE [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -NotContains [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value] Page 4/19

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -NotIn [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -NotLike [<CommonParameters>]

 Where-Object [-Property] <System.String> [[-Value]

 <System.Management.Automation.PSObject>] [-InputObject

 <System.Management.Automation.PSObject>] -NotMatch [<CommonParameters>]

DESCRIPTION

 The `Where-Object` cmdlet selects objects that have particular property values

 from the collection of objects that are passed to it. For example, you can use

 the `Where-Object` cmdlet to select files that were created after a certain

 date, events with a particular ID, or computers that use a particular version

 of Windows.

 Starting in Windows PowerShell 3.0, there are two different ways to construct

 a `Where-Object` command.

 - Script block . You can use a script block to specify the property name, a

 comparison operator, and a property value. `Where-Object` returns all

 objects for which the script block statement is true.

 For example, the following command gets processes in the `Normal` priority

 class, that is, processes where the value of the PriorityClass property

 equals `Normal`.

 `Get-Process | Where-Object {$_.PriorityClass -eq "Normal"}`

 All PowerShell comparison operators are valid in the script block format. For Page 5/19

 more information, see about_Comparison_Operators

 (./About/about_Comparison_Operators.md).

 - Comparison statement . You can also write a comparison statement, which is

 much more like natural language. Comparison statements were introduced in

 Windows PowerShell 3.0.

 For example, the following commands also get processes that have a priority

 class of `Normal`. These commands are equivalent and you can use them

 interchangeably.

 `Get-Process | Where-Object -Property PriorityClass -EQ -Value "Normal"`

 `Get-Process | Where-Object PriorityClass -EQ "Normal"`

 Starting in Windows PowerShell 3.0, `Where-Object` adds comparison operators

 as parameters in a `Where-Object` command. Unless specified, all operators

 are case-insensitive. Before Windows PowerShell 3.0, the comparison

 operators in the PowerShell language were only usable in script blocks.

 When you provide a single Property to `Where-Object`, the cmdlet treats the

 value of the property as a boolean expression. When the value of the

 property's Length isn't zero, the expression evaluates to `$true`. For

 example: `('hi', '', 'there') | Where-Object Length`

 The previous example is functionally equivalent to:

 - `('hi', '', 'there') | Where-Object Length -GT 0`

 - `('hi', '', 'there') | Where-Object { $_.Length -gt 0 }`

 For more information about how PowerShell evaluates booleans, see Page 6/19

 about_Booleans (about/about_Booleans.md).

PARAMETERS

 -CContains <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects from a collection if the property

 value of the object is an exact match for the specified value. This

 operation is case-sensitive.

 For example: `Get-Process | Where-Object ProcessName -CContains "svchost"`

 CContains refers to a collection of values and is true if the collection

 contains an item that is an exact match for the specified value. If the

 input is a single object, PowerShell converts it to a collection of one

 object.

 This parameter was introduced in Windows PowerShell 3.0.

 -CEQ <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is the same

 as the specified value. This operation is case-sensitive.

 This parameter was introduced in Windows PowerShell 3.0.

 -CGE <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is greater

 than or equal to the specified value. This operation is case-sensitive.

 This parameter was introduced in Windows PowerShell 3.0.

 -CGT <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is greater

 than the specified value. This operation is case-sensitive. Page 7/19

 This parameter was introduced in Windows PowerShell 3.0.

 -CIn <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value includes the

 specified value. This operation is case-sensitive.

 For example: `Get-Process | Where-Object -Value "svchost" -CIn

 ProcessName` CIn resembles CContains , except that the property and value

 positions are reversed. For example, the following statements are both

 true.

 `"abc", "def" -CContains "abc"`

 `"abc" -CIn "abc", "def"`

 This parameter was introduced in Windows PowerShell 3.0.

 -CLE <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is less-than

 or equal to the specified value. This operation is case-sensitive.

 This parameter was introduced in Windows PowerShell 3.0.

 -CLike <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value matches a

 value that includes wildcard characters (`*`). This operation is

 case-sensitive.

 For example: `Get-Process | Where-Object ProcessName -CLike "*host"`

 This parameter was introduced in Windows PowerShell 3.0.

 Page 8/19

 -CLT <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is less-than

 the specified value. This operation is case-sensitive.

 This parameter was introduced in Windows PowerShell 3.0.

 -CMatch <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value matches the

 specified regular expression. This operation is case-sensitive. When the

 input is a single object, the matched value is saved in the `$Matches`

 automatic variable.

 For example: `Get-Process | Where-Object ProcessName -CMatch "Shell"`

 This parameter was introduced in Windows PowerShell 3.0.

 -CNE <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is different

 than the specified value. This operation is case-sensitive.

 This parameter was introduced in Windows PowerShell 3.0.

 -CNotContains <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value of the

 object isn't an exact match for the specified value. This operation is

 case-sensitive.

 For example: `Get-Process | Where-Object ProcessName -CNotContains

 "svchost"` NotContains and CNotContains refer to a collection of values

 and are true when the collection doesn't contain any items that are an

 exact match for the specified value. If the input is a single object,

 PowerShell converts it to a collection of one object.

 Page 9/19

 This parameter was introduced in Windows PowerShell 3.0.

 -CNotIn <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value isn't an

 exact match for the specified value. This operation is case-sensitive.

 For example: `Get-Process | Where-Object -Value "svchost" -CNotIn

 -Property ProcessName` NotIn and CNotIn operators resemble NotContains and

 CNotContains , except that the property and value positions are reversed.

 For example, the following statements are true.

 `"abc", "def" -CNotContains "Abc"`

 `"abc" -CNotIn "Abc", "def"`

 -CNotLike <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value doesn't

 match a value that includes wildcard characters. This operation is

 case-sensitive.

 For example: `Get-Process | Where-Object ProcessName -CNotLike "*host"`

 This parameter was introduced in Windows PowerShell 3.0.

 -CNotMatch <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value doesn't

 match the specified regular expression. This operation is case-sensitive.

 When the input is a single object, the matched value is saved in the

 `$Matches` automatic variable.

 For example: `Get-Process | Where-Object ProcessName -CNotMatch "Shell"`

 This parameter was introduced in Windows PowerShell 3.0. Page 10/19

 -Contains <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if any item in the property value

 of the object is an exact match for the specified value.

 For example: `Get-Process | Where-Object ProcessName -Contains "Svchost"`

 If the input is a single object, PowerShell converts it to a collection of

 one object.

 This parameter was introduced in Windows PowerShell 3.0.

 -EQ <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is the same

 as the specified value.

 This parameter was introduced in Windows PowerShell 3.0.

 -FilterScript <System.Management.Automation.ScriptBlock>

 Specifies the script block that's used to filter the objects. Enclose the

 script block in braces (`{}`).

 The parameter name, FilterScript , is optional.

 -GE <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is greater

 than or equal to the specified value.

 This parameter was introduced in Windows PowerShell 3.0.

 -GT <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is greater

 than the specified value. Page 11/19

 This parameter was introduced in Windows PowerShell 3.0.

 -In <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value matches any

 of the specified values. For example:

 `Get-Process | Where-Object -Property ProcessName -in -Value "Svchost",

 "TaskHost", "WsmProvHost"`

 If the input is a single object, PowerShell converts it to a collection of

 one object.

 If the property value of an object is an array, PowerShell uses reference

 equality to determine a match. `Where-Object` returns the object only if

 the value of the Property parameter and any value of Value are the same

 instance of an object.

 This parameter was introduced in Windows PowerShell 3.0.

 -InputObject <System.Management.Automation.PSObject>

 Specifies the objects to filter. You can also pipe the objects to

 `Where-Object`.

 When you use the InputObject parameter with `Where-Object`, instead of

 piping command results to `Where-Object`, the cmdlet treats the

 InputObject as a single object. This is true even if the value is a

 collection that's the result of a command, such as `-InputObject

 (Get-Process)`.

 Because InputObject can't return individual properties from an array or

 collection of objects, we recommend that, if you use `Where-Object` to

 filter a collection of objects for those objects that have specific values Page 12/19

 in defined properties, you use `Where-Object` in the pipeline, as shown in

 the examples in this topic.

 -Is <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is an

 instance of the specified .NET type. Enclose the type name in square

 brackets.

 For example, `Get-Process | Where-Object StartTime -Is [DateTime]`

 This parameter was introduced in Windows PowerShell 3.0.

 -IsNot <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value isn't an

 instance of the specified .NET type.

 For example, `Get-Process | where StartTime -IsNot [DateTime]`

 This parameter was introduced in Windows PowerShell 3.0.

 -LE <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is less than

 or equal to the specified value.

 This parameter was introduced in Windows PowerShell 3.0.

 -Like <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value matches a

 value that includes wildcard characters (`*`).

 For example: `Get-Process | Where-Object ProcessName -Like "*host"`

 This parameter was introduced in Windows PowerShell 3.0. Page 13/19

 -LT <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is less than

 the specified value.

 This parameter was introduced in Windows PowerShell 3.0.

 -Match <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value matches the

 specified regular expression. When the input is a single object, the

 matched value is saved in the `$Matches` automatic variable.

 For example: `Get-Process | Where-Object ProcessName -Match "shell"`

 This parameter was introduced in Windows PowerShell 3.0.

 -NE <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value is different

 than the specified value.

 This parameter was introduced in Windows PowerShell 3.0.

 -NotContains <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if none of the items in the

 property value is an exact match for the specified value.

 For example: `Get-Process | Where-Object ProcessName -NotContains

 "Svchost"` NotContains refers to a collection of values and is true if the

 collection doesn't contain any items that are an exact match for the

 specified value. If the input is a single object, PowerShell converts it

 to a collection of one object.

 This parameter was introduced in Windows PowerShell 3.0. Page 14/19

 -NotIn <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value isn't an

 exact match for any of the specified values.

 For example: `Get-Process | Where-Object -Value "svchost" -NotIn -Property

 ProcessName`

 If the value of Value is a single object, PowerShell converts it to a

 collection of one object.

 If the property value of an object is an array, PowerShell uses reference

 equality to determine a match. `Where-Object` returns the object only if

 the value of Property and any value of Value aren't the same instance of

 an object.

 This parameter was introduced in Windows PowerShell 3.0.

 -NotLike <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects if the property value doesn't

 match a value that includes wildcard characters (`*`).

 For example: `Get-Process | Where-Object ProcessName -NotLike "*host"`

 This parameter was introduced in Windows PowerShell 3.0.

 -NotMatch <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets objects when the property value doesn't

 match the specified regular expression. When the input is a single object,

 the matched value is saved in the `$Matches` automatic variable.

 For example: `Get-Process | Where-Object ProcessName -NotMatch

 "PowerShell"` Page 15/19

 This parameter was introduced in Windows PowerShell 3.0.

 -Property <System.String>

 Specifies the name of a property of the input object. The property must be

 an instance property, not a static property. This is a positional

 parameter, so the name, Property , is optional.

 This parameter was introduced in Windows PowerShell 3.0.

 -Value <System.Management.Automation.PSObject>

 Specifies a property value. The parameter name, Value , is optional. This

 parameter accepts wildcard characters when used with the following

 comparison parameters:

 - CLike - CNotLike - Like - NotLike This parameter was introduced in

 Windows PowerShell 3.0.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 --------------- Example 1: Get stopped services ---------------

 Get-Service | Where-Object { $_.Status -eq "Stopped" }

 Get-Service | Where-Object Status -EQ "Stopped"

 -------- Example 2: Get processes based on working set --------

 Get-Process | Where-Object { $_.WorkingSet -GT 250MB } Page 16/19

 Get-Process | Where-Object WorkingSet -GT 250MB

 -------- Example 3: Get processes based on process name --------

 Get-Process | Where-Object { $_.ProcessName -Match "^p.*" }

 Get-Process | Where-Object ProcessName -Match "^p.*"

 -------- Example 4: Use the comparison statement format --------

 Get-Process | Where-Object -Property Handles -GE -Value 1000

 Get-Process | where Handles -GE 1000

 --------- Example 5: Get commands based on properties ---------

 # Use Where-Object to get commands that have any value for the OutputType

 # property of the command. This omits commands that do not have an OutputType

 # property and those that have an OutputType property, but no property value.

 Get-Command | Where-Object OutputType

 Get-Command | Where-Object { $_.OutputType }

 # Use Where-Object to get objects that are containers. This gets objects that

 # have the **PSIsContainer** property with a value of $True and excludes all

 # others.

 Get-ChildItem | Where-Object PSIsContainer

 Get-ChildItem | Where-Object { $_.PSIsContainer }

 # Finally, use the -not operator (!) to get objects that are not containers.

 # This gets objects that do have the **PSIsContainer** property and those

 # that have a value of $False for the **PSIsContainer** property.

 Get-ChildItem | Where-Object { !$_.PSIsContainer } Page 17/19

 # You cannot use the -not operator (!) in the comparison statement format

 # of the command.

 Get-ChildItem | Where-Object PSIsContainer -eq $False

 -------------- Example 6: Use multiple conditions --------------

 Get-Module -ListAvailable | Where-Object {

 ($_.Name -notlike "Microsoft*" -and $_.Name -notlike "PS*") -and

 $_.HelpInfoUri

 }

 This example shows how to create a `Where-Object` command with multiple

 conditions.

 This command gets non-core modules that support the Updatable Help feature.

 The command uses the ListAvailable parameter of the `Get-Module` cmdlet to get

 all modules on the computer. A pipeline operator (`|`) sends the modules to

 the `Where-Object` cmdlet, which gets modules whose names don't begin with

 `Microsoft` or `PS`, and have a value for the HelpInfoURI property, which

 tells PowerShell where to find updated help files for the module. The `-and`

 logical operator connects the comparison statements.

 The example uses the script block command format. Logical operators, such as

 `-and`,`-or`, and `-not` are valid only in script blocks. You can't use them

 in the comparison statement format of a `Where-Object` command.

 - For more information about PowerShell logical operators, see

 about_Logical_Operators (./About/about_logical_operators.md). - For more

 information about the Updatable Help feature, see about_Updatable_Help

 (./About/about_Updatable_Help.md).

REMARKS

 To see the examples, type: "get-help Where-Object -examples". Page 18/19

 For more information, type: "get-help Where-Object -detailed".

 For technical information, type: "get-help Where-Object -full".

 For online help, type: "get-help Where-Object -online"

Page 19/19

