
PowerShell Get-Help on command 'Use-Transaction'

PS C:\Users\wahid> Get-Help Use-Transaction

NAME

 Use-Transaction

SYNOPSIS

 Adds the script block to the active transaction.

SYNTAX

 Use-Transaction [-TransactedScript] <System.Management.Automation.ScriptBlock>

 [-UseTransaction] [<CommonParameters>]

DESCRIPTION

 The `Use-Transaction` cmdlet adds a script block to an active transaction.

 This enables you to do transacted scripting by using transaction-enabled

 Microsoft .NET Framework objects. The script block can contain only

 transaction-enabled .NET Framework objects, such as instances of the

 Microsoft.PowerShell.Commands.Management.TransactedString class.

 The UseTransaction parameter, which is optional for most cmdlets, is required

 when you use this cmdlet.
Page 1/5

 `Use-Transaction` is one of a set of cmdlets that support the transactions

 feature in Windows PowerShell. For more information, see about_Transactions

 (../Microsoft.PowerShell.Core/About/about_Transactions.md).

PARAMETERS

 -TransactedScript <System.Management.Automation.ScriptBlock>

 Specifies the script block that is run in the transaction. Enter any valid

 script block enclosed in braces (`{}`). This parameter is required.

 -UseTransaction <System.Management.Automation.SwitchParameter>

 Includes the command in the active transaction. This parameter is valid

 only when a transaction is in progress. For more information, see

 about_transactions

 (../Microsoft.PowerShell.Core/About/about_Transactions.md).

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 --- Example 1: Script by using a transaction-enabled object ---

 Start-Transaction

 $transactedString = New-Object

 Microsoft.PowerShell.Commands.Management.TransactedString

 $transactedString.Append("Hello")

 Use-Transaction -TransactedScript { $transactedString.Append(", World") }

 -UseTransaction

 $transactedString.ToString()

 Page 2/5

 Hello

 Use-Transaction -TransactedScript { $transactedString.ToString() }

 -UseTransaction

 Hello, World

 Complete-Transaction

 $transactedString.ToString()

 Hello, World

 This example shows how to use `Use-Transaction` to script against a

 transaction-enabled .NET Framework object. In this case, the object is a

 TransactedString object.

 The first command uses the `Start-Transaction` cmdlet to start a transaction.

 The second command uses the New-Object command to create a TransactedString

 object. It stores the object in the `$TransactedString` variable.

 The third and fourth commands both use the Append method of the

 TransactedString object to add text to the value of `$TransactedString`. One

 command is part of the transaction. The other command is not.

 The third command uses the Append method of the transacted string to add Hello

 to the value of `$TransactedString`. Because the command is not part of the

 transaction, the change is applied immediately.

 The fourth command uses `Use-Transaction` to add text to the string in the

 transaction. The command uses the Append method to add ", World" to the value

 of `$TransactedString`. The command is enclosed in braces (`{}`) to make it a

 script block. The UseTransaction parameter is required in this command. Page 3/5

 The fifth and sixth commands use the ToString method of the TransactedString

 object to display the value of the TransactedString as a string. Again, one

 command is part of the transaction. The other transaction is not.

 The fifth command uses the ToString method to display the current value of the

 $TransactedString variable. Because it is not part of the transaction, it

 displays only the current state of the string.

 The sixth command uses `Use-Transaction` to run the same command in the

 transaction. Because the command is part of the transaction, it displays the

 current value of the string in the transaction, much like a preview of the

 transaction changes.

 The seventh command uses the `Complete-Transaction` cmdlet to commit the

 transaction.

 The final command uses the ToString method to display the resulting value of

 the variable as a string.

 -------------- Example 2: Roll back a transaction --------------

 Start-Transaction

 $transactedString = New-Object

 Microsoft.PowerShell.Commands.Management.TransactedString

 $transactedString.Append("Hello")

 Use-Transaction -TransactedScript { $transactedString.Append(", World") }

 -UseTransaction

 Undo-Transaction

 $transactedString.ToString()

 Hello

 This example shows the effect of rolling back a transaction that includes Page 4/5

 `Use-Transaction` commands. Like all commands in a transaction, when the

 transaction is rolled back, the transacted changes are discarded and the data

 is unchanged.

 The first command uses `Start-Transaction` to start a transaction.

 The second command uses `New-Object` to create a TransactedString object. It

 stores the object in the `$TransactedString` variable.

 The third command, which is not part of the transaction, uses the Append

 method to add "Hello" to the value of `$TransactedString`.

 The fourth command uses `Use-Transaction` to run another command that uses the

 Append method in the transaction. The command uses the Append method to add ",

 World" to the value of `$TransactedString`.

 The fifth command uses the Undo-Transaction cmdlet to roll back the

 transaction. As a result, all commands performed in the transaction are

 reversed.

 The final command uses the ToString method to display the resulting value of

 `$TransactedString` as a string. The results show that only the changes that

 were made outside the transaction were applied to the object.

REMARKS

 To see the examples, type: "get-help Use-Transaction -examples".

 For more information, type: "get-help Use-Transaction -detailed".

 For technical information, type: "get-help Use-Transaction -full".

 For online help, type: "get-help Use-Transaction -online"

Page 5/5

