University

e M | Powershell FPDF Library

PDF generator

the OS that this PODF file was gennecated?

PowerShell Get-Help on command 'Update-List’

PS C:\Users\wahid> Get-Help Update-List

NAME
Update-List

SYNOPSIS
Adds items to and removes items from a property value that contains a

collection of objects.

SYNTAX
Update-List [[-Property] <System.String>] [-Add <System.Object[]>]
[-InputObject <System.Management.Automation.PSObject>] [-Remove

<System.Object[]>] [ckCommonParameters>]

Update-List [[-Property] <System.String>] [-InputObject
<System.Management.Automation.PSObject>] -Replace <System.Object[]>

[<CommonParameters>]

DESCRIPTION

The "Update-List™ cmdlet adds, removes, or replaces items in a property value

of an object and returns the updated object. This cmdlet is designed for Page 1/7

properties that contain collections of objects.

The Add and Remove parameters add individual items to and remove them from the

collection. The Replace parameter replaces the entire collection.

If you don't specify a property in the command, "Update-List™ returns a
hashtable that describes the update instead of updating the object. Later, you

can use this change set to update a list object.

This cmdlet works only when the property that's being updated supports the
IList interface that "Update-List™ uses. Also, any "Set” cmdlets that accept

an update must support the IList interface.

PARAMETERS
-Add <System.Object[]>
Specifies the property values to be added to the collection. Enter the

values in the order that they should appear in the collection.

-InputObject <System.Management.Automation.PSObject>
Specifies the objects to be updated. You can also pipe the object to be

updated to "Update-List'.

-Property <System.String>
Specifies the property that contains the collection that's being updated.
If you omit this parameter, "Update-List returns an object that

represents the change instead of changing the object.

-Remove <System.Object[]>

Specifies the property values to be removed from the collection.

-Replace <System.Object[]>

Specifies a new collection. This parameter replaces all items in the Page 2/7

original collection with the items specified by this parameter.

<CommonParameters>
This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see

about_CommonParameters (https:/go.microsoft.com/fwlink/?LinklID=113216).

class Cards {

[System.Collections.Generic.List[string]]$cards

[string]$name

Cards([string]$_name) {
$this.name = $_name

$this.cards = [System.Collections.Generic.List[string]]::new()

NewDeck() {
$_suits = [char]0x2663,[char]0x2666,[char]0x2665,[char]0x2660
$ values ='A',2,3,4,5,6,7,8,9,10,'7','Q",'K'
$_deck = foreach ($s in $_suits){ foreach ($v in $_values){ "$v$s"} }
$this | Update-List -Property cards -Add $_deck | Out-Null

Show() {
Write-Host
Write-Host $this.name ": " $this.cards[0..12]
if ($this.cards.count -gt 13) {
Write-Host (' ' * ($this.name.length+3)) $this.cards[13..25]
} Page 3/7

if ($this.cards.count -gt 26) {
Write-Host (* ' * ($this.name.length+3)) $this.cards[26..38]

}
if ($this.cards.count -gt 39) {

Write-Host (' ' * ($this.name.length+3)) $this.cards[39..51]

Shuffle() { $this.cards = Get-Random -InputObject $this.cards -Count 52 }

Sort() { $this.cards.Sort() }

> [INOTE] > The "Update-List” cmdlet outputs the updated object to the

pipeline. We pipe the output to > "Out-Null” to suppress the unwanted display.

--- Example 2: Add and remove items of a collection property ---

$playerl = [Cards]::new('Player 1"
$player2 = [Cards]::new('Player 2"

$deck = [Cards]::new('Deck’)
$deck.NewDeck()
$deck.Shuffle()
$deck.Show()

Deal two hands

$playerl | Update-List -Property cards -Add $deck.cards|0,2,4,6,8] | Out-Null
$player2 | Update-List -Property cards -Add $deck.cards[1,3,5,7,9] | Out-Null
$deck | Update-List -Property cards -Remove $playerl.cards | Out-Null

$deck | Update-List -Property cards -Remove $player2.cards | Out-Null

$playerl.Show()
$player2.Show()

Page 4/7

$deck.Show()

Deck: 4 7J5A8JQ63962
K4108 1096 K73 QAQ
35253JJ104Q10422
6 7A589K739AKS

Playerl1: 4 J AJ 6

Player2: 758 Q 3

Deck: 96 2K 4108 1096 K7 3
QAQ3525JJ104 Q 10
42267A589K739
AKSB8

The output shows the state of the deck before the cards were dealt to the
players. You can see that each player received five cards from the deck. The
final output shows the state of the deck after dealing the cards to the

players. "Update-List™ was used to select the cards from the deck and add them
to the players' collection. Then the players' cards were removed from the deck

using "Update-List’.

Player 1 wants two new cards - remove 2 cards & add 2 cards
$playerl | Update-List -Property cards -Remove $playerl.cards[0,4] -Add
$deck.cards[0..1] | Out-Null

$playerl.Show()

remove dealt cards from deck
$deck | Update-List -Property cards -Remove $deck.cards[0..1] | Out-Null

$deck.Show()
Page 5/7

Player1: J AJ 96

Deck: 2 K4108 1096 K73QA
Q35253JJ104Q104°2
26 7A589K739AK
8

$list = [System.Collections.ArrayList] (1, 43, 2)
$changelnstructions = Update-List -Remove 43 -Add 42

$changelnstructions

Name Value
Add {42}
Remove {43}

([PSListModifier]($changelnstructions)).Apply To($list)
$list

42

REMARKS
To see the examples, type: "get-help Update-List -examples”.
For more information, type: "get-help Update-List -detailed".
For technical information, type: "get-help Update-List -full”.

For online help, type: "get-help Update-List -online"
Page 6/7

Page 7/7

