
PowerShell Get-Help on command 'Stop-Job'

PS C:\Users\wahid> Get-Help Stop-Job

NAME

 Stop-Job

SYNOPSIS

 Stops a PowerShell background job.

SYNTAX

 Stop-Job [-Filter] <System.Collections.Hashtable> [-PassThru] [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Stop-Job [-Id] <System.Int32[]> [-PassThru] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Stop-Job [-InstanceId] <System.Guid[]> [-PassThru] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Stop-Job [-Job] <System.Management.Automation.Job[]> [-PassThru] [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Stop-Job [-Name] <System.String[]> [-PassThru] [-Confirm] [-WhatIf]
Page 1/9

 [<CommonParameters>]

 Stop-Job [-State] {NotStarted | Running | Completed | Failed | Stopped |

 Blocked | Suspended | Disconnected | Suspending | Stopping | AtBreakpoint}

 [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Stop-Job` cmdlet stops PowerShell background jobs that are in progress.

 You can use this cmdlet to stop all jobs or stop selected jobs based on their

 name, ID, instance ID, or state, or by passing a job object to `Stop-Job`.

 You can use `Stop-Job` to stop background jobs, such as those that were

 started by using the `Start-Job` cmdlet or the AsJob parameter of any cmdlet.

 When you stop a background job, PowerShell completes all tasks that are

 pending in that job queue and then ends the job. No new tasks are added to the

 queue after this command is submitted.

 This cmdlet does not delete background jobs. To delete a job, use the

 `Remove-Job` cmdlet.

 Starting in Windows PowerShell 3.0, `Stop-Job` also stops custom job types,

 such as WorkflowJobs and instances of ScheduledJobs . To enable `Stop-Job` to

 stop a job with custom job type, import the module that supports the custom

 job type into the session before you run a `Stop-Job` command, either by using

 the `Import-Module` cmdlet or by using or getting a cmdlet in the module. For

 information about a particular custom job type, see the documentation of the

 custom job type feature.

PARAMETERS

 -Filter <System.Collections.Hashtable>

 Specifies a hash table of conditions. This cmdlet stops jobs that satisfy Page 2/9

 every condition. Enter a hash table where the keys are job properties and

 the values are job property values.

 This parameter works only on custom job types, such as WorkflowJobs and

 ScheduledJobs . It does not work on standard background jobs, such as

 those created by using the `Start-Job` cmdlet. For information about

 support for this parameter, see the help topic for the job type.

 This parameter was introduced in Windows PowerShell 3.0.

 -Id <System.Int32[]>

 Specifies the IDs of jobs that this cmdlet stops. The default is all jobs

 in the current session.

 The ID is an integer that uniquely identifies the job in the current

 session. It is easier to remember and type than the instance ID, but it is

 unique only in the current session. You can type one or more IDs,

 separated by commas. To find the ID of a job, type `Get-Job`.

 -InstanceId <System.Guid[]>

 Specifies the instance IDs of jobs that this cmdlet stops. The default is

 all jobs.

 An instance ID is a GUID that uniquely identifies the job on the computer.

 To find the instance ID of a job, use `Get-Job`.

 -Job <System.Management.Automation.Job[]>

 Specifies the jobs that this cmdlet stops. Enter a variable that contains

 the jobs or a command that gets the jobs. You can also use a pipeline

 operator to submit jobs to the `Stop-Job` cmdlet. By default, `Stop-Job`

 deletes all jobs that were started in the current session.

 -Name <System.String[]> Page 3/9

 Specifies friendly names of jobs that this cmdlet stops. Enter the job

 names in a comma-separated list or use wildcard characters (`*`) to enter

 a job name pattern. By default, `Stop-Job` stops all jobs created in the

 current session.

 Because the friendly name is not guaranteed to be unique, use the WhatIf

 and Confirm parameters when stopping jobs by name.

 -PassThru <System.Management.Automation.SwitchParameter>

 Returns an object representing the item with which you are working. By

 default, this cmdlet does not generate any output.

 -State <System.Management.Automation.JobState>

 Specifies a job state. This cmdlet stops only jobs in the specified state.

 The acceptable values for this parameter are:

 - `NotStarted`

 - `Running`

 - `Completed`

 - `Failed`

 - `Stopped`

 - `Blocked`

 - `Suspended`

 - `Disconnected`

 - `Suspending` Page 4/9

 - `Stopping`

 For more information about job states, see JobState Enumeration

 (/dotnet/api/system.management.automation.jobstate).

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 Example 1: Stop a job on a remote computer with Invoke-Command

 $s = New-PSSession -ComputerName Server01 -Credential Domain01\Admin02

 $j = Invoke-Command -Session $s -ScriptBlock {Start-Job -ScriptBlock

 {Get-EventLog -LogName System}}

 Invoke-Command -Session $s -ScriptBlock { Stop-job -Job $Using:j }

 This example shows how to use the `Stop-Job` cmdlet to stop a job that is

 running on a remote computer.

 Because the job was started with the `Invoke-Command` cmdlet to run a

 `Start-Job` command remotely, the job object is stored on the remote computer.

 You must use another `Invoke-Command` command to run a `Stop-Job` command Page 5/9

 remotely. For more information about remote background jobs, see

 about_Remote_Jobs.

 The first command creates a PowerShell session (PSSession) on the Server01

 computer, and then stores the session object in the `$s` variable. The command

 uses the credentials of a domain administrator.

 The second command uses the `Invoke-Command` cmdlet to run a `Start-Job`

 command in the session. The command in the job gets all of the events in the

 System event log. The resulting job object is stored in the `$j` variable.

 The third command stops the job. It uses the `Invoke-Command` cmdlet to run a

 `Stop-Job` command in the PSSession on Server01. Because the job objects are

 stored in `$j`, which is a variable on the local computer, the command uses

 the Using scope modifier to identify `$j` as a local variable. For more

 information about the Using scope modifier, see about_Remote_Variables

 (about/about_Remote_Variables.md).

 When the command finishes, the job is stopped and the PSSession in `$s` is

 available for use.

 --------------- Example 2: Stop a background job ---------------

 Stop-Job -Name "Job1"

 This command stops the `Job1` background job.

 ----------- Example 3: Stop several background jobs -----------

 Stop-Job -Id 1, 3, 4

 This command stops three jobs. It identifies them by their IDs .

 ------------- Example 4: Stop all background jobs -------------

 Get-Job | Stop-Job Page 6/9

 This command stops all of the background jobs in the current session.

 --------- Example 5: Stop all blocked background jobs ---------

 Stop-Job -State Blocked

 This command stops all the jobs that are blocked.

 ------------- Example 6: Stop a job by instance ID -------------

 Get-Job | Format-Table ID, Name, Command,

 @{Label="State";Expression={$_.JobStateInfo.State}},

 InstanceID -Auto

 Id Name Command State InstanceId

 -- ---- ------- ----- ----------

 1 Job1 start-service schedule Running 05abb67a-2932-4bd5-b331-c0254b8d9146

 3 Job3 start-service schedule Running c03cbd45-19f3-4558-ba94-ebe41b68ad03

 5 Job5 get-service s* Blocked e3bbfed1-9c53-401a-a2c3-a8db34336adf

 Stop-Job -InstanceId e3bbfed1-9c53-401a-a2c3-a8db34336adf

 These commands show how to stop a job based on its InstanceID .

 The first command uses the `Get-Job` cmdlet to get the jobs in the current

 session. The command uses a pipeline operator (`|`) to send the jobs to a

 `Format-Table` command, which displays a table of the specified properties of

 each job. The table includes the InstanceID of each job. It uses a calculated

 property to display the job state.

 The second command uses a `Stop-Job` command that has the InstanceID parameter

 to stop a selected job.

 ---------- Example 7: Stop a job on a remote computer ----------

 Page 7/9

 $j = Invoke-Command -ComputerName Server01 -ScriptBlock {Get-EventLog -LogName

 System} -AsJob

 $j | Stop-Job -PassThru

 Id Name State HasMoreData Location Command

 -- ---- ---- ----------- -------- -------

 5 Job5 Stopped True user01-tablet Get-EventLog

 -LogName Sy...

 This example shows how to use the `Stop-Job` cmdlet to stop a job that is

 running on a remote computer.

 Because the job was started with the AsJob parameter of the `Invoke-Command`

 cmdlet, the Job object is located on the local computer, even though the job

 runs on the remote computer. Therefore, you can use a local `Stop-Job` command

 to stop the job.

 The first command uses the `Invoke-Command` cmdlet to start a background job

 on the Server01 computer. The command uses the AsJob parameter to run the

 remote command as a background job.

 This command returns a job object, which is the same job object that the

 `Start-Job` cmdlet returns. The command saves the job object in the `$j`

 variable.

 The second command uses a pipeline operator to send the job in the `$j`

 variable to `Stop-Job`. The command uses the PassThru parameter to direct

 `Stop-Job` to return a job object. The job object display confirms that the

 state of the job is Stopped.

 For more information about remote background jobs, see about_Remote_Jobs

 (About/about_Remote_Jobs.md).

REMARKS Page 8/9

 To see the examples, type: "get-help Stop-Job -examples".

 For more information, type: "get-help Stop-Job -detailed".

 For technical information, type: "get-help Stop-Job -full".

 For online help, type: "get-help Stop-Job -online"

Page 9/9

