
PowerShell Get-Help on command 'Set-StrictMode'

PS C:\Users\wahid> Get-Help Set-StrictMode

NAME

 Set-StrictMode

SYNOPSIS

 Establishes and enforces coding rules in expressions, scripts, and script

 blocks.

SYNTAX

 Set-StrictMode -Off [<CommonParameters>]

 Set-StrictMode -Version <System.Version> [<CommonParameters>]

DESCRIPTION

 The `Set-StrictMode` cmdlet configures strict mode for the current scope and

 all child scopes, and turns it on and off. When strict mode is on, PowerShell

 generates a terminating error when the content of an expression, script, or

 script block violates basic best-practice coding rules.

 Use the Version parameter to determine the coding rules to enforce.
Page 1/7

 `Set-PSDebug -Strict` cmdlet turns on strict mode for the global scope.

 `Set-StrictMode` affects only the current scope and its child scopes. Then,

 you can use it in a script or function to override the setting inherited from

 the global scope.

 When `Set-StrictMode` is off, PowerShell has the following behaviors:

 - Uninitialized variables are assumed to have a value of `0` (zero) or

 `$Null`, depending on type

 - References to non-existent properties return `$Null`

 - Results of improper function syntax vary with the error conditions

 - Attempting to retrieve a value using an invalid index in an array returns

 `$Null`

PARAMETERS

 -Off <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet turns strict mode off for the current scope and

 all child scopes.

 -Version <System.Version>

 Specifies the conditions that cause an error in strict mode. This

 parameter accepts any valid PowerShell version number. Any number higher

 than `3` is treated as `Latest`. The value supplied must be the string

 `Latest` or a string that can be converted to a System.Version type. The

 version must match a valid release version of PowerShell.

 The effective values for this parameter are:

 Page 2/7

 - `1.0` - Prohibits references to uninitialized variables, except for

 uninitialized variables in strings. - `2.0` - Prohibits references to

 uninitialized variables. This includes uninitialized variables in

 strings. - Prohibits references to non-existent properties of an object.

 - Prohibits function calls that use the syntax for calling methods. -

 `3.0` - Prohibits references to uninitialized variables. This includes

 uninitialized variables in strings. - Prohibits references to

 non-existent properties of an object. - Prohibits function calls that

 use the syntax for calling methods. - Prohibit out of bounds or

 unresolvable array indexes. - `Latest` - Selects the latest version

 available. The latest version is the most strict. Use this value to

 make sure that scripts use the strictest available version, even when new

 versions are added to PowerShell.

 > [!CAUTION] > Using `Latest` for Version in scripts isn't deterministic.

 The meaning of `Latest` can change > in new releases of PowerShell. A

 script written for an older version of PowerShell that uses >

 `Set-StrictMode -Version Latest` is subject to more restrictive rules when

 run in a newer version > of PowerShell.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------- Example 1: Turn on strict mode as version 1.0 --------

 # Strict mode is off by default.

 $a -gt 5

 False

 Page 3/7

 Set-StrictMode -Version 1.0

 $a -gt 5

 The variable $a cannot be retrieved because it has not been set yet.

 At line:1 char:3

 + $a <<<< -gt 5

 + CategoryInfo : InvalidOperation: (a:Token) [], RuntimeException

 + FullyQualifiedErrorId : VariableIsUndefined

 With strict mode set to version `1.0`, attempts to reference variables that

 aren't initialized fail.

 -------- Example 2: Turn on strict mode as version 2.0 --------

 # Strict mode is off by default.

 function add ($a, $b) {

 '$a = ' + $a

 '$b = ' + $b

 '$a+$b = ' + ($a + $b)

 }

 add 3 4

 $a = 3

 $b = 4

 $a+$b = 7

 add(3,4)

 $a = 3 4

 $b =

 $a+$b = 3 4

 Set-StrictMode -Version 2.0 Page 4/7

 add(3,4)

 The function or command was called like a method. Parameters should be

 separated by spaces,

 as described in 'Get-Help about_Parameter.'

 At line:1 char:4

 + add <<<< (3,4)

 + CategoryInfo : InvalidOperation: (:) [], RuntimeException

 + FullyQualifiedErrorId : StrictModeFunctionCallWithParens

 Set-StrictMode -Off

 $string = "This is a string."

 $null -eq $string.Month

 True

 Set-StrictMode -Version 2.0

 $string = "This is a string."

 $null -eq $string.Month

 Property 'Month' cannot be found on this object; make sure it exists.

 At line:1 char:9

 + $string. <<<< month

 + CategoryInfo : InvalidOperation: (.:OperatorToken) [],

 RuntimeException

 + FullyQualifiedErrorId : PropertyNotFoundStrict

 This command turns strict mode on and sets it to version `2.0`. As a result,

 PowerShell returns an error if you use method syntax, which uses parentheses

 and commas, for a function call or reference uninitialized variables or

 non-existent properties.

 The sample output shows the effect of version `2.0` strict mode. Page 5/7

 Without version `2.0` strict mode, the `(3,4)` value is interpreted as a

 single array object to which nothing is added. With version `2.0` strict mode,

 it's correctly interpreted as faulty syntax for submitting two values.

 Without version `2.0`, the reference to the non-existent Month property of a

 string returns only `$Null`. With version `2.0`, it's interpreted correctly as

 a reference error.

 -------- Example 3: Turn on strict mode as version 3.0 --------

 # Strict mode is off by default.

 $a = @(1)

 $null -eq $a[2]

 $null -eq $a['abc']

 True

 True

 Set-StrictMode -Version 3.0

 $a = @(1)

 $null -eq $a[2]

 $null -eq $a['abc']

 Index was outside the bounds of the array.

 At line:1 char:1

 + $null -eq $a[2]

 + ~~~~~~~~~~~~~~~

 + CategoryInfo : OperationStopped: (:) [],

 IndexOutOfRangeException

 + FullyQualifiedErrorId : System.IndexOutOfRangeException

 Cannot convert value "abc" to type "System.Int32". Error: "Input string was

 not in a correct format." Page 6/7

 At line:1 char:1

 + $null -eq $a['abc']

 + ~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:) [], RuntimeException

 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

 With strict mode set to version `3` or higher, invalid or out of bounds

 indexes result in errors.

REMARKS

 To see the examples, type: "get-help Set-StrictMode -examples".

 For more information, type: "get-help Set-StrictMode -detailed".

 For technical information, type: "get-help Set-StrictMode -full".

 For online help, type: "get-help Set-StrictMode -online"

Page 7/7

